
Symbolic-numeric algorithm for intersecting linear differential varieties
Siyuan Deng1 Zahra Mohammadi2 Greg Reid1

1Univ. of Western Ontario

2Univ. of Guelph

Motivation

Under and over determined systems of differential
equations arise in applications and have hidden
constraints. We can determine those constraints
by prolongation and projection. Usually, models
in application can be partitioned to two parts:
exact and approximate. For example, consider
the equation ∇2u = f (x, y, z). The left hand
side of the following equation is the gravity po-
tential, which is exact, where the right hand side
is the density of instellar gas, which is approxi-
mate, since it is derived from data. So it is natural
to exploit exact and approximate structure.

Prolongation and projection

If we consider u
i

as the ith order derivatives of u,

1 single prolongation:

D(R) =
{

(x, u
0
, . . . , u

q+1
) ∈ J q+1 : R = 0, Dx1R = · · · = DxnR = 0

}
2 single projection:

π(R) =
{

(x, u
0
, . . . , u

q−1
) ∈ J q−1 : R(x, u

0
, u

1
, . . . , u

q
) = 0

}
.

3 multiple prolongation and projection: done by iteration

Geometric involutive form(GIF)

1 Input: linear approximate system & initial data list
2 prolongation & substitution of rif-form of exact subsystem
3 geometric involutive basis
4 Output: matrices incluidng info of dimension of kernal, row space, etc.

Joint exact and approximate

Suppose we have hybrid system R. Now we can partition it into exact part

and approximate part. The exact subsystem is a general PDE system,

and we can apply differential elimination, here we use rifsimp, a alreday-

defined algorithm. Then we can apply our geometric invoulutive form to the

approximate subsystem. We need to amalgamate these different methods,

by using geometric invariants, such as differential Hilbert function(DHF).

Apply DHF to exact part then we can use derived info to seek joint GIF.

Algorithm 1

Algorithm 1 SplitExactApprox
Input: Disjoint systems exact system ExSys, approximate system
ApSys and a flag.
Output: [rExSys, SimpApSys, flag]
where rExSys is in rif-form, SimpApSys is an approximate system simpli-
fied with respect to rExSys.

1: Find the rif-form of ExSys w.r.t an orderly ranking:
rExSys := rif(ExSys)

2: Simplify the approximate system w.r.t the exact system:
SimpApSys := dsubs(rExSys, ApSys)

3: ExSimpApSys := ExactSystem(SimpApSys)
4: if ExSimpApSys = ∅ then flag:=false

else flag:=true
end if

5: ExSys := rExSys ∪ ExSimpApSys
6: ApSys := SimpApSys \ ExSimpApSys
7: return [ExSys, ApSys, flag]

Algorithm 2

Algorithm 2 HybridGeometricInvolutiveForm
Input: Linear Homogeneous differential system R.
Output: Geometric Involutive Form for system R

1: Lines 1 to 5: split the system into ExSys and ApSys
ExSys := ∅, ApSys := R

2: flag:=true
3: while flag = true do
4: [ExSys, ApSys, flag] := SplitExactApprox(ExSys, ApSys,

flag)
5: end do
6: Compute the ID and Differential Hilbert Function for ExSys

determining its involutivity order.
7: IDExSys := initialdata(ExSys)
8: HFExSys := DifferentialHilbertFunction(IDExSys,s)
9: for k from 0 do

Compute and simplify prolongations
10: DApSys[k] := dsubs(ExSys, DkApSys)
11: until ExSys ∪ DApSys[k] tests projectively involutive
12: return [ExSys, ApSys, DApSys[k], HFExSys, IDExSys]

Hybrid system of Poisson equation

Suppose we have an equation, with right hand side defined as approximate.

uxx + uyy + uzz = 1
2

(G(x, y, z + 0.001) + G(x, y, z − 0.001))
(1)

The linearized form of local Lie symmetry group is:

x̃ = x + ξ(x, y, z, u)ϵ + O(ϵ2)
ỹ = y + η(x, y, z, u)ϵ + O(ϵ2)
z̃ = z + ζ(x, y, z, u)ϵ + O(ϵ2)
ũ = u + ϕ(x, y, z, u)ϵ + O(ϵ2) (2)

Determining the components ξ, η, ζ, ϕ of (2) leads a linear homogeneous
system called determining equations [1,4]. Some existing computer algebra
implementations are [6, 2, 3, 5].

R = [ϕu − ϕ

u
= 0, ηu = 0, ηu,u = 0, ξu = 0, ξu,u = 0, ζu = 0,

− 2ηy + 2ζz = 0, −2ηx,u − 2ξy,u = 0, −2ηy,u + ϕu,u = 0,

− 2ξx,u + ϕu,u = 0, −2ζx − 2ξz = 0, −2ζy − 2ηz = 0,

− 2ζy,u − 2ηz,u = 0, −2ζz,u + ϕu,u = 0, −2ηx − 2ξy = 0,

− 2ξx + 2ζz = 0, ζu,u = 0, −2ζx,u − 2ξz,u = 0,

− 2ζy,u − 2ηz,u = 0, −2ζz,u + ϕu,u = 0,

− ηuG − ηx,x − ηy,y + 2ϕy,u − ηz,z = 0,

− ξuG − ξx,x + 2ϕx,u − ξy,y − ξz,z = 0,

− 3ζuG − ζx,x − ζy,y + 2ϕz,u − ζz,z = 0,

ϕx,x + ϕy,y + ϕz,z − ηGy − ζGz − ξGx + ϕuG − 2ζzG = 0]

Application of algorithms 1 on
Poisson equation

Applying rifsimp to ExSys yields

rExSys := [ηz,z,z = 0, ξz,z,z = 0, ζz,z,z = 0,

ξy,y = ξz,z, ξy,z = 0, ηx = −ξy, ξx = ζz,

ζx = −ξz, ηy = ζz, ζy = −ηz, ηu = 0,

ϕu = ϕ

u
, ξu = 0, ζu = 0]

Now we simplify ApSys with respect to rExSys using dsubs(rExSys, ApSys)
and obtain:

SimpApSys :=

[−ξz,zu − 2ϕx

u
= 0,

−ηz,zu + 2ϕy

u
= 0,

ζz,zu + 2ϕz

u
= 0,

Gϕ

u
+ ϕx,x + ϕy,y + ϕz,z − 2Gζz − ηGy − ξGx − ζGz = 0]

Notice that the first 3 equations of SimpApSys are now exact and they can
be removed to yield an updated

ApSys := [Gϕ

u
+ϕx,x+ϕy,y+ϕz,z−2Gζz−ηGy−ξGx−ζGz = 0]

The 3 exact equations can be appended to rExSys to give an updated
ExSys:

ExSys := rExSys ∪

[−ξz,zu − 2ϕx

u
= 0,

−ηz,zu + 2ϕy

u
= 0,

ζz,zu + 2ϕz

u
= 0]

Application of algorithm 2 on
Poisson equation

Applying rifsimp to the new ExSys, yields:
rExSys := [ξu = 0, ηu = 0, ζu = 0, ξy,z = 0, ϕx,x = 0,

ϕx,y = 0, ϕx,z = 0, ϕy,y = 0, ϕy,z = 0, ϕz,z = 0, ξx = ζz,

ηy = ζz, ηx = −ξy, ζx = −ξz, ζy = −ηz, ϕu = ϕ

u
,

ξy,y = 2ϕx

u
, ξz,z = 2ϕx

u
, ηz,z = 2ϕy

u
, ζz,z = −2ϕz

u
]

The initial data about a point w0 = (x0, y0, z0, u0) for this system is
[η(w0) = c1, ηz(w0) = c2, ϕ(w0) = c3, ϕx(w0) = c4,

ϕy(w0) = c5, ϕz(w0) = c6, ξ(w0) = c7, ξy(w0) = c8,

ξz(w0) = c9, ζ(w0) = c10, ζz(w0) = c11]
and the Differential Hilbert Function is

H(s) = 4 + 7s (3)
Following our Intersection algorithm we simplify ApSys with respect to the
new rExSys and obtain:

SimpApSys := [−ηGy − ζGz − ξGx − 2ζzG + ϕG

u
= 0] (4)

We note that both the order 2 prolongation of rExSys and indeed SimpAp-
Sys is also involutive. What remains is to prolong SimpApSys:

SimpApSys[k] := dsubs(rExSys, DkSimpApSys) (5)
until the joint system rExSys ∪ SimpApSys[k] tests projectively involu-

tive. The dimension tests for involutivity are executed using the dimension

information from the DifferentiaHilbertFunction for rExSys combined with

the dimensions of the kernel and row space (co-kernel) of the projections of

the prolonged approximate system. Since rExSys has 0 dimensional sym-

bol all the calculations are efficiently carried out in J2, actually J1 after

elimination from rExSys.

References

[1] S. Anco, G. Bluman, and T. Wolf.
Invertible mappings of nonlinear PDEs to linear PDEs through admitted
conservation laws.
Acta Applicandae Mathematicae, 101, 21–38, 2008.

[2] J. Carminati and K. Vu.
Symbolic computation and differential equations: Lie symmetries.
Journal of Symbolic Computation, 29, 95–116, 2000.

[3] A. F. Cheviakov.
GeM software package for computation of symmetries and conservation laws of
differential equations.
Computer Physics Communications, 176(1), 48–61, 2007.

[4] P. Olver.
Application of Lie groups to differential equations.
Springer-Verlag, 2nd edition, 1993.

[5] T. Rocha Filho and A. Figueiredo.
SADE: A Maple package for the symmetry analysis of differential equations.
Computer Physics Communications, 182(2), 467–476, 2011.

[6] T. Wolf.
Investigating differential equations with crack, liepde, applsymm and conlaw.

Handbook of Computer Algebra, Foundations, Applications, Systems, 37,

465–468, 2002.


