
Pipeline Pattern Detection in the Polyhedral Model
Delaram Talaashrafi 1 Johannes Doerfert 2 Marc Moreno Maza 1

1Western University 2Argonne National Laboratory

Introduction

The polyhedral model has repeatedly shown how it facilitates various loop transformaধons, includ-

ing loop parallelizaধon, loop ধling, and sođware pipelining. However, parallelism is almost exclu-

sively exploited on a per-loop basis without muchwork on detecধng cross-loop parallelizaধon op-

portuniধes. While many problems can be scheduled such that loop dimensions are dependence-

free, the resulধng loop parallelism does not necessarily maximize concurrent execuধon, especially

not for unbalanced problems. In this work, we introduce a polyhedral-model-based analysis and

scheduling algorithm that exposes and uধlizes cross-loop parallelizaধon through tasking. This

work exploits pipeline paħerns between iteraধons in different loop nests, and it is well suited to

handle imbalanced iteraধons. Our LLVM/Polly-based prototype performs schedule modificaধons

and code generaধon targeধng a minimal, language agnosধc tasking layer. We present results

using an implementaধon of this API with the OpenMP task construct. For different computa-

ধon paħerns, we achieved speed-ups of up to 3.5× on a quad-core processor while LLVM/Polly

alone fails to exploit the parallelism. The objecধve of this paper is to detect the cross-loop task

parallelism in a program. We exploit this opportunity by detecধng pipeline paħern between it-

eraধon blocks of different for-loop nests; we call it cross-loop pipeline paħern. Detecধng this

paħern provides a building block towards exploiধng the natural data-flow parallelism. There has

been some efforts to consider this parallelizaধon opportunity. The paper [3] generates pipelined

mulধ-thread code by interleaving iteraধons of some loops. Paper [2] proposes an algorithm for

detecধng pipeline opportuniধes between iteraধon blocks of two loop nests.

Motivating example

Consider the program below, where A and B are two N × N matrices, and loops are sequenধal.

Figure 1. Example with cross-loop pipeline

Figure 2. Sequenধal execuধon. R starts ađer iteraধons of S are finished.

Figure 3. Pipeline execuধon. Iteraধons of R are overlapped with iteraধons of S.

In the pipeline execuধon, thread_0 runs the iteraধon blocks of Statement S, and thread_1
runs the iteraধon blocks of Statement R. Thread_1 can start running an iteraধon of R right af-

ter thread_0 finishes the iteraধon block of S that it depends on.

Finding pipeline map

Consider two statements S and T with respecধve iteraধon domains I and J . Also, assume that

the iteraধons of Swrite in a set of memory locaধons M, and that the iteraধons of T read from M.

We define the pipeline map between S and T to be the relaধon TS,T(I → J ), where (~i,~j) ∈ TS,T
if and only if (1) ađer running all iteraধons of S up to ~i, we can safely run all iteraধons of T up

to ~j, and (2)~i is the lexicographically smallest vector and ~j is the lexicographically largest vector
with Property (1). This map is called the pipeline map, because for every pair (~i,~j) in TS,T, we can

run iteraধons of T up to ~j and iteraধons of S ađer ~i, in parallel. Repeaধng this paħern creates
a pipeline among iteraধon blocks of the loop nests. We use the pipeline maps to parধধon the

iteraধon domain of each statement to get the iteraধon blocks that are in pipeline relaধon. For

a statement S and a pipeline map T , if S is the source (resp. target) statement, we parধধon its

iteraধon domain, I , such that each element of Dom(T ) (resp. Range(T )) is the lexicographically
largest member of its part. Then, by mapping each member of each part to the largest member of

that part, we obtain the source blocking map VS(I → I) (resp. a target blocking map YS(I → I)).

Example of pipeline map

Consider the previous example with N=20. The pipeline map between statements S and R is:
{S[i0, i1] →R[o0, o1] : ∃(e0 = b(i1)/2c :

o0 = i0 ∧ 2e0 = i1 ∧ 2o1 ≥ i1 ∧ 2o1 ≤ 1 + i1
∧ i0 ≥ 0 ∧ i0 ≤ 8 ∧ i1 ≥ 0 ∧ i1 ≤ 16)}.

One part of the source blocking map is:

∃(e0 = b(o1)/2c : o0 = i0 ∧ 2e0 = o1 ∧ i0 ≥ 0 ∧ i0 ≤ 8 ∧ i1 ≥ 0 ∧ i1 ≤ 16 ∧ o1 ≥ i1 ∧ o1 ≤ 1 + i1).
Therefore, some elements of the map are:

{S[1, 1] → S[1, 2], S[1, 2] → S[1, 2], S[1, 3] → S[1, 4], S[1, 4] → S[1, 4]}.

Iteraধons [1, 1] and [1, 2] are in one block, and [1, 3] and [1, 4] are in another block.

Detecting pipeline relations

For each statement S, there are potenধally several pipeline maps, for which S is either a source

or a target. As a result, there are potenধally several source and target blocking maps aħached to

S. However, for the statement S, we must have a single pipeline blocking map of the iteraধon
domain of S, so that each pipeline block can be considered as a task (actually a pipeline stage).

Therefore, for each statement S, we integrate all its source and target blocking maps together.
Our goal is to establish a pipeline relaধon between all blocks of all statements. Moreover, we

choose these blocks so as to maximize the number of blocks of different loops that can execute

in parallel. In order to generate a correct task-parallel program we compute the dependence

relaধons between all tasks. As for the pipeline maps and blocking maps, the construcধon of this

dependence graph is achieved with algebraic operaধons on binary relaধons. The performance

improvement of the pipelined program comes from the places that we can overlap the execuধon

of iteraধon blocks of different for-loop nests. Therefore, the performance of the pipelined program

is limited to the loop nest with the maximum running ,meࣅ Lmax. Figure 4 shows this idea.

Figure 4. Average case performance of pipelined program, where the third loop has the largest running ধme.

Code generation for the pipelined program

We implement the pipeline detecধon algorithm as a part of Polly [1] and use the ISL library [4]

for polyhedral computaধon. We modify Polly passes in the analysis, transformaধon, and code

generaধon phases to add support for the pipeline paħern detecধon and code generaধon. For

exploiধng the detected parallelism, we use OpenMP task constructs. First, we extend the defini-
ধon of the SCoP to include informaধon needed for pipelining. Then, we used the informaধon to

create a schedule tree and the AST that includes tasks and their dependencies. In the final step,

we design a high-level OpenMP funcধon for exploiধng the detected task parallelism. Each task

is defined as a funcধon pointer with its input arguments integrated into a structure. We use the

in-dependencies and out-dependencies of the tasks as computed in the previous steps. We also

need the size of the input and the total number of statements that a task depends on.

Figure 5. Signature of the funcধon for creaধng tasks.

Evaluation

We simulate compute-intensive kernels by consecuধvely calling the next_prime funcধon of the
GMP library on the elements of mpz matrices.

Figure 6. Speed-up of the tests, considering different values for N and SIZE.

References

[1] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Größlinger, and Louis-Noël Pouchet. Polly-polyhedral

opধmizaধon in llvm. In Proceedings of the First Internaࣅonal Workshop on Polyhedral Compilaࣅon Techniques (IMPACT), volume 2011,

page 1, 2011.

[2] Kornilios Kourধs, Marধno Dazzi, Nikolas Ioannou, Tobias Grosser, Abu Sebasধan, and Evangelos Eleđheriou. Compiling neural

networks for a computaধonal memory accelerator. 2020.

[3] Harenome Razanajato, Cédric Bastoul, and Vincent Loechner. Pipelined mulধthreading generaধon in a polyhedral compiler. In IMPACT

2020, in conjuncࣅon with HiPEAC 2020, 2020.

[4] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Internaࣅonal Congress on Mathemaࣅcal Sođware, pages

299–302. Springer, 2010.


	Overview

