Pipeline Pattern Detection In the Polyhedral Model

Delaram Talaashrafi ?

RC

Johannes Doerfert© Marc Moreno Maza't

Ontario Research Centre for Computer Algebra

N\¥estern University “Argonne National Laboratory

Introduction

The polyhedral model has repeatedly shown how it facilitates various loop transformations, includ-
ing loop parallelization, loop tiling, and software pipelining. However, parallelism is almost exclu-
sively exploited on a per-loop basis without much work on detecting cross-loop parallelization op-
portunities. While many problems can be scheduled such that loop dimensions are dependence-
free, the resulting loop parallelism does not necessarily maximize concurrent execution, especially
not for unbalanced problems. In this work, we introduce a polyhedral-model-based analysis and
scheduling algorithm that exposes and utilizes cross-loop parallelization through tasking. This
work exploits pipeline patterns between iterations in different loop nests, and it is well suited to
handle imbalanced iterations. Our LLVM/Polly-based prototype performs schedule modifications
and code generation targeting a minimal, language agnostic tasking layer. We present results
using an implementation of this APl with the OpenMP task construct. For different computa-
fion patterns, we achieved speed-ups of up to 3.5x on a quad-core processor while LLVM/Polly
alone fails to exploit the parallelism. The objective of this paper is to detect the cross-loop task
parallelism in a program. We exploit this opportunity by detecting pipeline pattern between it-
eration blocks of different for-loop nests; we call it cross-loop pipeline pattern. Detecting this
pattern provides a building block towards exploiting the natural data-flow parallelism. There has
been some efforts to consider this parallelization opportunity. The paper [3] generates pipelined
multi-thread code by interleaving iterations of some loops. Paper [2] proposes an algorithm for
detecting pipeline opportunities between iteration blocks of two loop nests.

Motivating example

Consider the program below, where A and B are two N x N matrices, and loops are sequential.

for(1=0; 1<N-1; 1++)
for(j=0: j<N-1: j++)
S: A[1]J[3]1=fCALC1]10C3], AC1]C3+1]1, ALi1+1][3+11);

5 for(1=0; 1<N/2-1; 1++)

6 for(j=0: j<N/2-1: j++)

7 R: BLil[jl=g(A[L1]J[2%3], BL11Lj+11, BL1+1]J[3+11],
- BLil[j1);

Figure 1. Example with cross-loop pipeline

(S, [0, @]) (S, [0, 1]y (S,]@, 2]) (S, last)(R, [@, @]) (R, [0, 1]) (R, last)

." >.,.>. ’

Figure 2. Sequential execution. R starts after iterations of S are finished.

(s, [0,]) 810,201 (04D

thread o .—._.

(R, [@, @]) (R, [0,1]) (R, last)

thread_1 .—).).

ti%ne

Figure 3. Pipeline execution. Iterations of R are overlapped with iterations of S.

In the pipeline execution, thread 0 runs the iteration blocks of Statement S, and thread 1
runs the iteration blocks of Statement R. Thread 1 can start running an iteration of R right af-
ter thread O finishes the iteration block of S that it depends on.

Finding pipeline map

Consider two statements S and T with respective iteration domains Z and J. Also, assume that
the iterations of S write in a set of memory locations M, and that the iterations of T read from M.
We define the pipeline map between S and T to be the relation Ts 1(Z — J), where (3, j) € Ts T

if and only if (1) after running all iterations of S up to i, we can safely run all iterations of T up
to j, and (2) 7 is the lexicographically smallest vector and 4 is the lexicographically largest vector
with Property (1). This map is called the pipeline map, because for every pair (¢, 7) in Tg., we can

run iterations of T up to]‘and iterations of S after 4, in parallel. Repeating this pattern creates
a pipeline among iteration blocks of the loop nests. We use the pipeline maps to partition the
iteration domain of each statement to get the iteration blocks that are in pipeline relation. For
a statement S and a pipeline map 7T, if S is the source (resp. target) statement, we partition its
iteration domain, Z, such that each element of Dom(7T") (resp. Range(T)) is the lexicographically
largest member of its part. Then, by mapping each member of each part to the largest member of
that part, we obtain the source blocking map Vs(Z — Z) (resp. a target blocking map Vs(Z — 7)).

Example of pipeline map

Consider the previous example with N=20. The pipeline map between statements S and R is:

{8[io, i1] —R[op, 01] : F(ep = | (¢1)/2] :
og =19 /N\2e)=11N201>11N201 <1+1
ANig > 0N <8Ai1 >0A1 <16)}.

One part of the source blocking map is:
d(eg = |(01)/2] :og=igAN2eg=01Ntg=>0ANig<8ANi1 >0AN1; <16A01 > i1 ANop < 1+417).
Therefore, some elements of the map are:

{s|1,1] — 8|1, 2],8[1,2] — S1,2],8[1,3] — S|1,4],S|1,4] — S|1,4]}.

iterations [1, 1] and [1, 2] are in one block, and [1, 3] and [1, 4] are in another block.

Detecting pipeline relations

For each statement S, there are potentially several pipeline maps, for which S is either a source
or a target. As a result, there are potentially several source and target blocking maps attached to
S. However, for the statement S, we must have a single pipeline blocking map of the iteration
domain of S, so that each pipeline block can be considered as a task (actually a pipeline stage).
Therefore, for each statement S, we integrate all its source and target blocking maps together.
Our goal Is to establish a pipeline relation between all blocks of all statements. Moreover, we
choose these blocks so as to maximize the number of blocks of different loops that can execute
in parallel. In order to generate a correct task-parallel program we compute the dependence
relations between all tasks. As for the pipeline maps and blocking maps, the construction of this
dependence graph is achieved with algebraic operations on binary relations. The performance
improvement of the pipelined program comes from the places that we can overlap the execution
of iteration blocks of different for-loop nests. Therefore, the performance of the pipelined program
is limited to the loop nest with the maximum running time, Ly,q.. Figure 4 shows this idea.

Ly
—_—
| Ly
| ® ®
: Ls
e —
: I L 4
| ' -——y
| ' Lo
| I I |
>
[- ' ” h 1 ['
starting time L max finishing time

Figure 4. Average case performance of pipelined program, where the third loop has the largest running time.

Code generation for the pipelined program

We implement the pipeline detection algorithm as a part of Polly [1] and use the ISL library [4]
for polyhedral computation. We modify Polly passes in the analysis, transformation, and code
generation phases to add support for the pipeline pattern detection and code generation. For
exploiting the detected parallelism, we use OpenMP task constructs. First, we extend the defini-
tion of the SCoP to include information needed for pipelining. Then, we used the information to
create a schedule tree and the AST that includes tasks and their dependencies. In the final step,
we design a high-level OpenMP function for exploiting the detected task parallelism. Each task
Is defined as a function pointer with its input arguments integrated into a structure. We use the
in-dependencies and out-dependencies of the tasks as computed in the previous steps. We also
need the size of the input and the total number of statements that a task depends on.

. vold CreateTask(void (*xf) (void *), void *1input,
int outDepend, 1int outldx,
int *1nDepend, 1int *1nIdx,

4 int 1nputSize, 1nt dependNum)

Figure 5. Signature of the function for creating tasks.

Evaluation

We simulate compute-intensive kernels by consecutively calling the next _prime function of the

GMP library on the elements of mpz matrices.

P1 4171 179 182 188 186 189 186 186 192 1.93 ._3-5
P2 4154 156 157 131 129 128 139 139 158 1.6
P3 {239 249 252 273 271 275 275 278 277 264 - 3.0
P4 4135 136 136 139 142 141 14 141 128 1.3
P5 4301 31 313 . 3.44 - 3.48 337 334 |55
P6 4 157 157 158 195 195 197 2.01 2.01 194 1.87
P74 1.9 1389 192 2.01 201 202 21 21 212 21

PB | 3.ﬂ5 3.14 3.2 _ 3-39 3-32

Po 4 1.88 192 194 246 247 245 262 2.65 251 23534

- 2.0

- 1.5
P10 4 1.74 1.79 1.78 158 1.6 1.6 157 1.57 135 1.29

NS &
. ,ﬂ-s;-.-g} @Lﬁé} E}}# -;;:"ﬁ

» © O
B N
N A R R

o

‘\:"

Figure 6. Speed-up of the tests, considering different values for N and SIZE.

References

[1] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas SimbuUrger, Armin GroBlinger, and Louis-Noél Pouchet. Polly-polyhedral
optimization in llvm. In Proceedings of the First International Workshop on Polyhedral Compilation Techniques (IMPACT), volume 2011,
page 1, 2011.

[2] Kornilios Kourtis, Martino Dazzi, Nikolas loannou, Tobias Grosser, Abu Sebastian, and Evangelos Eleftheriou. Compiling neural
networks for a computational memory accelerator. 2020.

3] Harenome Razanajato, Cédric Bastoul, and Vincent Loechner. Pipelined multithreading generation in a polyhedral compiler. In IMPACT
2020, in conjunction with HIPEAC 2020, 2020.

(4] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In International Congress on Mathematical Software, pages
299-302. Springer, 2010.

	Overview

