

Overview

A Laurent series is a generalization of a power series in which negative degrees are allowed. Following the ideas of Monforte and Kauers in [2], we present a **first implementation** of multivariate Laurent series in MAPLE. Since we rely on MAPLE's MultitivariatePower-Series [1], and its lazy evaluation scheme, the minimal element of the support of a given Laurent series object may not be known, when we compute with that object. We show how to deal with this challenge when performing arithmetic operations on Laurent series.

Construction

Let \mathbb{K} be a field, $\mathbf{x} = x_1, \ldots, x_p$ and $\mathbf{u} = u_1, \ldots, u_m$ be ordered indeterminates with $m \ge p$. The elements $g(\mathbf{u})$ of the ring $\mathbb{K}[[\mathbf{u}]]$ of **multivariate** formal power series look like

$$g(\mathbf{u}) = \Sigma_{\mathbf{k} \in \mathbb{N}^m} a_{\mathbf{k}} \mathbf{u}^{\mathbf{k}},$$

for $a_{\mathbf{k}}$ in \mathbb{K} , and $\mathbf{u}^{\mathbf{k}}$ is a notation for $u_1^{k_1} \cdots u_p^{k_p}$ where $k_1 \ldots, k_p$ are non-negative integers.

The elements $f(\mathbf{x})$ of the field $\mathbb{K}((\mathbf{x}))$ of **multi**variate formal Laurent series look like:

$$f(\mathbf{x}) := \sum_{\mathbf{k} \in \mathbb{Z}^p} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}},$$

where the $a_{\mathbf{k}}$ are elements of \mathbb{K} . Let $C \subseteq \mathbb{R}^p$ be a cone. All cones here are line**free**, polyhedral and generated by integer vectors. The set of the Laurent series $f(\mathbf{x}) \in \mathbb{K}((\mathbf{x}))$ with $\operatorname{supp}(f(\mathbf{x})) \subseteq C$ is an integral domain denoted by $\mathbb{K}_C[[\mathbf{x}]], \text{ where:}$

$$\operatorname{supp}(f(\mathbf{x})) := \{ \mathbf{k} \in \mathbb{Z}^p \mid a_{\mathbf{k}} \neq 0 \}.$$

Note that, there exists $g(\mathbf{x}) \in \mathbb{K}_C[[\mathbf{x}]]$ with $f(\mathbf{x})g(\mathbf{x}) = 1$, if and only if $a_0 \neq 0$.

Let \leq be an **additive order** in \mathbb{Z}^p and let \mathcal{C} be the set of all cones $C \subseteq \mathbb{R}^p$ which are **compatible** with \preceq . Define:

$$\mathbb{K}_{\leq}[[\mathbf{x}]] := \bigcup_{C \in \mathcal{C}} \mathbb{K}_C[[\mathbf{x}]]$$

and
$$\mathbb{K}_{\leq}((\mathbf{x})) := \bigcup_{\mathbf{e} \in \mathbb{Z}^p} \mathbf{x}^{\mathbf{e}} \mathbb{K}_{\leq}[[\mathbf{x}]],$$

Then, $\mathbb{K}_{\prec}[[\mathbf{x}]]$ is a **ring** and $\mathbb{K}_{\prec}((\mathbf{x}))$ is a **field**. Our goal is to implement $\mathbb{K}_{\prec}((\mathbf{x}))$, where \preceq is \leq_{qlex} .

Algorithms for multivariate Laurent series

Matt Calder¹, Juan Pablo González Trochez², Marc Moreno Maza² and Erik Postma¹ ¹Maplesoft, ²University of Western Ontario

Graded reverse lexicographic order

The graded reverse lexicographic order or	Ou
grevlex denoted by $<_{glex}$, for two vectors of \mathbb{Z}^p ,	ser
• first compares their total degrees ;	tha
\bullet then uses a reverse lexicographic order as	pro Ez
tie-breaker;	Co
Example	
Set $\mathbf{v}_1 = (1, 0, -1), \ \mathbf{v}_2 = (0, 0, 0), \ \mathbf{v}_3 = (1, 1, -1),$	
and $v_4 = (2, -1, -1)$. Then, we have:	

 $\mathbf{v}_2 <_{glex} \mathbf{v}_1 <_{glex} \mathbf{v}_4 <_{glex} \mathbf{v}_3.$

Proposition: the Laurent series object

Let $g \in \mathbb{K}[[\mathbf{u}]]$ be a power series, $\mathbf{e} \in \mathbb{Z}^p$ be a point, and **non-negative** rays. Then,

is a Laurent series living in $\mathbf{x}^{\mathbf{e}}\mathbb{K}_C[[\mathbf{x}]]$, where C is the cone generated by **R**.

Addition and multiplication

Let $C_1, C_2 \subseteq \mathbb{Z}^p$ be two cones generated, re- spectively, by two sets of grevlex non-negative	Fo m
rays, $\mathbf{R}_1 := \{\mathbf{r}'_1, \ldots, \mathbf{r}'_m\} \subset \mathbb{Z}^p$ and $\mathbf{R}_2 :=$	g
$\{\mathbf{r}_1'',\ldots,\mathbf{r}_m''\} \subset \mathbb{Z}^p$, with $m \geq p$. Consider two	ra
Laurent series in $\mathbb{K}_{\leq}(\mathbf{x})$, namely:	g
$f_1 = \mathbf{x}^{\mathbf{e}_1} g_1(\mathbf{x}^{\mathbf{R}_1}) \text{ and } f_2 = \mathbf{x}^{\mathbf{e}_2} g_2(\mathbf{x}^{\mathbf{R}_2}),$	m
with $g_1, g_2 \in \mathbb{K}[[\mathbf{u}]]$ and $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{Z}^p$. Then, we have:	W
$f_1f_2 = \mathbf{x}^{\mathbf{e}_1+\mathbf{e}_2}ig(g_1(\mathbf{x}^{\mathbf{R}_1})g_2(\mathbf{x}^{\mathbf{R}_2})ig)$.	V
Assume $\mathbf{e} = \mathbf{e}_1$ is the grevlex-minimum of \mathbf{e}_1	F
and \mathbf{e}_2 . Then, we have:	u: E
$f_1 + f_2 = \mathbf{x}^{\mathbf{e}} \left(g_1(\mathbf{x}^{\mathbf{R}_1}) + \mathbf{x}^{\mathbf{e}_2 - \mathbf{e}} g_2(\mathbf{x}^{\mathbf{R}_2}) \right).$	E a:
To make f_1f_2 (resp. $f_1 + f_2$) an LSO object, we	ti
need to find a cone containing $\operatorname{supp}(f_1f_2)$ (resp.	e
$supp(f_1 + f_2))$. To this end, we developed an al-	Α
gorithm which takes as input a number of cones	R
C_1, C_2, \ldots all generated by grevlex non-negative	E
rays and returns a cone C generated by p grevlex	1 2
non-negative rays and such that C contains the	3
union of C_1, C_2, \ldots	4
(111)(11)(11)(1) (1) (2) (1) (2)	5

The Laurent series object

ur implementation **encodes** multivariate Laurent eries as a *Laurent series object*, LSO for short, hat is, quintuple $(\mathbf{x}, \mathbf{u}, \mathbf{e}, \mathbf{R}, g)$, based on the roposition below.

xample

Consider $f := x^{-4}y^5 \sum_{i=0}^{\infty} x^{2i}y^{-i}$. To encode f as an SO, one can choose:

 $\mathbf{x} = [x, y], \mathbf{u} = [u, v],$ g = Inverse(PowerSeries(1 + uv)), $\mathbf{r} = [1, 0], [1, -1]], \mathbf{e} = [x = -4, y = 5].$

d
$$\mathbf{R} := \{\mathbf{r}_1, \dots, \mathbf{r}_m\} \subset \mathbb{Z}^p$$
 be a set of **grevlex**

 $f = \mathbf{x}^{\mathbf{e}} g(\mathbf{x}^{\mathbf{r}_1}, \dots, \mathbf{x}^{\mathbf{r}_m}),$

Inversion

or an LSO f= (**x**, **u**, **e**, **R**, g), knowing $\min(\operatorname{supp}(g))$ would not guarantee finding the **revlex-minimum** element of $\operatorname{supp}(f)$, if **R** has ays with null total degree. However, if \mathbf{R} is a set of **revlex-positive** rays, min supp $(q(\mathbf{x}^{\mathbf{R}}))$ equals $\min\left\{\mathbf{R} \cdot \mathbf{k}^T \mid \mathbf{k} \in \operatorname{supp}(g) \text{ with } \left|\mathbf{R} \cdot \mathbf{k}^T\right| \le \left|\mathbf{R} \cdot \mathbf{k}^T\right|\right\},\$ where $\mathbf{k} = \min(\operatorname{supp}(g))$ and $\mathbf{R} = (\mathbf{r}_1^T, \dots, \mathbf{r}_m^T)$. When \mathbf{R} has rays with null total degree, we replace $\mathbf{\bar{k}} \cdot \mathbf{\bar{k}}^{T}$ by a *guess* bound *B* and carry computations ntil the guess is proved to be wrong, in which case is increased. As an optimization, if g has a known nalytic form G, see [1], and if G is a rational funcion, then min supp $(g(\mathbf{x}^{\mathbf{R}}))$ is always computable, ven if \mathbf{R} has rays with null total degree.

Igorithm 1 Inverse

else

equire: Laurent series $f(\mathbf{x}) = \mathbf{x}^{\mathbf{e}} g(\mathbf{x}^{\mathbf{R}})$. **nsure:** The inverse f^{-1} of f.

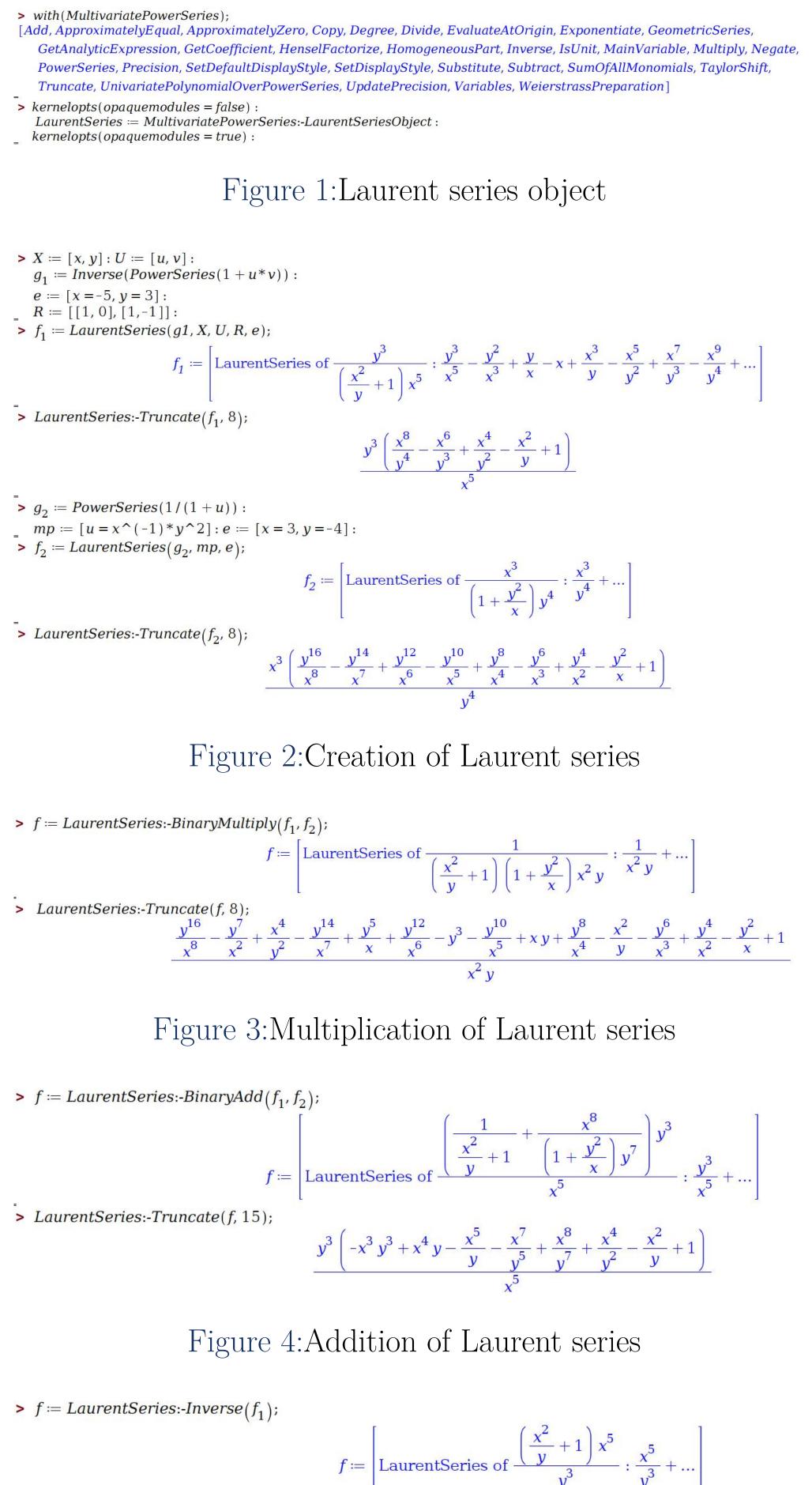
if AnalyticExpression(f) = Undefined or non-rational then **return** \mathbf{x}^{-e} InverseOfUndefinedAnalyticExpression($q(\mathbf{x}^{R})$)

 \triangleright The analytic expression of f. $q := \mathsf{AnalyticExpression}(f)$ return \mathbf{x}^{-e} InverseOfAnalyticExpression (q, \mathbf{x}^{R})

[1] Mohammadali Asadi, Alexander Brandt, Mahsa Kazemi, Marc Moreno-Maza, and Erik Postma. Multivariate power series in Maple. Springer International Publishing, 2021.

2013.

Maple overview



> $h \coloneqq LaurentSeries:-BinaryMultiply(f_1, f);$ $h \coloneqq [LaurentSeries: 1]$ > LaurentSeries:-Truncate(h, 100);

Figure 5:Inversion of a Laurent series

[2] Ainhoa Aparicio Monforte and Manuel Kauers. Formal laurent series in several variables. Expositiones Mathematicae, 31(4):350–367,