
– Algebraic tools supporting comprehensive optimization of parametric GPU kernels
Mohammadali Asadi, Alexander Brandt, Robert HC Moir and Marc Moreno Maza

Introduction

The Basic Polynomial Algebra Subprograms (BPAS) library is a free, open-
source, and multi-threaded library providing support for polynomial algebra on modern
computer architectures, in particular hardware accelerators. Typical operations are poly-
nomial arithmetic, multi-point evaluation and interpolation, and real root isolation. BPAS
is written in C and C++ with CilkPlus extensions targeting multi-core processors.

⊳ Objectives ⊲

Part of the objective of the IBM-NSERC CRD CAS Project 880 is to provide efficient im-
plementations of sophisticated algebraic algorithms for nonlinear polynomial system solv-
ing, required to determine optimal parameter values for parametric GPU kernels. BPAS
is being extended to achieve this by porting the capabilities of the RegularChains

library of the computer algebra system (CAS) Maple, while simultaneously improving
efficiency and taking advantage of parallelism.

⊳ Importance of Sparse Polynomial Arithmetic ⊲

The solve command in Maple uses the RegularChains library to solve polynomial
systems by computing triangular decompositions, which are essentially simplified alge-
braic descriptions of the solution set. These algorithms depends heavily on low-level
operations, such as polynomial arithmetic, as well as other mid-level algebraic computa-
tions. Optimizing system solving thus requires optimizing these fundamental algorithms.

Sparse polynomial arithmetic is foundational to triangular decomposition. Sparse means
that zero coefficients are not stored in the data structure, providing memory-efficient
and natural representations. The amount of space required to store polynomials in a
dense format (where all coefficients are stored) increases exponentially in the number of
variables, and thus prohibitively large for nonlinear system solving. We have aggressively
optimized the arithmetic operations for polynomials over Z and Q.

Sparse Polynomial Arithmetic

⊳ Notation and Representation ⊲

Sparse polynomials in a polynomial ring D[x1, . . . , xm], for an integral domain D and
variable ordering x1 < x2 < ⋯ < xm, have two main representations: distributed and
recursive. Both are needed in BPAS, depending on the operation.

In a distributed format, polynomials a are represented as a sum of terms

a =
na

∑
i=1

Ai =
na

∑
i=1

aiX
αi,

where na is the number of (non-zero) terms, 0 ≠ ai ∈ D, αi is an m-tuple of exponents
for the variables X = (x1, . . . , xm). A term of a is represented by Ai = aiXαi, so that
each coefficient ai ∈ D and each monomial Xαi ∈ D[x1, . . . , xm] with αi > αi+1.

In a recursive format, a polynomial is regarded as an element of D[x1, . . . , xm−1][xm],
coefficients are elements of D[x1, . . . , xm−1] and monomials are elements of D[xm].
Viewed recursively, a is essentially a univariate polynomial in R[xm] with coefficients in
R = D[x1, . . . , xm−1]. Operations that are essentially univariate, such as pseudo-division
(fraction-free division), require such a recursive view.

⊳ Key Aspects of Sparse Arithmetic ⊲

Two main issues require special care to perform sparse polynomial operations efficiently:

(1) not computing multiple terms with the same monomial (since they will be com-
bined into a single term in the result); and

(2) computing the terms in order, so that expensive sorting is not required.

We follow and extend the algorithms of [2] for arithmetic that generate terms in order.
The key idea for this method is that the polynomials a = ∑na

i=1 aiX
αi and b = ∑nb

j=1 bjX
βj

are each initially sorted, so if we multiply a term Ai = aiXαi by b, then the monomials
Xαi+βj in Ai ⋅ b satisfy Xαi+βj >Xαi+βj+1.

For multiplication, we produce terms in order by maintaining an ordered list of the
maximal element (ai ⋅ bj)Xαi+βj of each sub-product Ai ⋅ b that has yet to be used in the
product. Maintaining this ordered list is implemented efficiently using a heap.

Polynomial division of a by b requires computing q and r such that a = qb+ r. Division
is essentially multiplication with a continuously updating operand, q. Division generates
new terms of q from the product of the previously produced quotient terms with b. With
slight tweaks to multiplication this is easy to achieve.

Pseudo-division involves computing i, q and r such that hia = qb + r, where
h = lc(b) ∈ R, and a, b, q, r ∈ R[xm]. Accordingly, pseudo-division uses a slightly-
modified version of the division algorithm to deal with hi.

We formally prove the correctness of these algorithms and provide pseudocode in [1].

Implementation

Our implementation focuses on effective memory usage and management. Memory
traversal is optimized through data locality and memory-efficient data structures.

⊳ Polynomial Data Structures ⊲

•Distributed polynomials are stored in an alternating array, alternating between coef-
ficients and monomials. Corresponding coefficients and monomials have optimal data
locality. Coefficients are GMP multi-precision integers or rational numbers.

•Monomials, assuming a consistent variable ordering, are only a list (array) of exponents,
an exponent vector; the symbols themselves are not needed during computation.

•Exponent vectors are encoded using exponent packing. Integers of small absolute
value have many leading zero bits when encoded into machine integers. Leading zero
bits are removed by packing many into a single 64-bit word, improving memory usage.

– Lower-ordered variables are given more bits in the packing to facilitate intermediate
expression swell experienced during polynomial system solving.

–Having exactly one machine word reduces monomial comparisons and multiplications
to a single machine instruction (cf. iterating through a list of integers).

5 = 0x00000005 2 = 0x00000002 3 = 0x00000003 0x005 0x00002 0x00000003

32 bits 12 bits 20 bits 32 bits

Figure 2: The exponent vector for x5y2z3 packed into a single machine word.

•We use an in-place conversion from distributed to recursive representation. The recur-
sive view adds an auxiliary alternating array which alternates between (1) main variable
degree, (2) number of terms in coefficient, (3) pointer to coefficient in distributed array.

3 x3y2z 6 x2y2z 4 x2yz 7 z

3 y2z 6 y2z 4 yz 7 z

3 1 2 2 0 1

Distributed

Recursive

Figure 3: A distributed polynomial converted to recursive representation, showing the auxiliary array.

⊳ Heap-Based Arithmetic Optimization ⊲

Our algorithms rely on producing terms of the result (product, quotient, remainder) in
order. We use a binary heap as an effective data structure for retrieving maximum
elements from a continuously updating data set, essentially performing heap sort.

αi + βj

αi+1 + βj

. . .

i j

i + 1 j

i − 1 j + 2

Heap Elements Element Chains

Figure 4: A heap of product terms, showing element chaining and index-based storing of coefficients.
In this case, terms Ai+1 ⋅Bj and Ai−1 ⋅Bj+2 have equal monomials and are chained together.

•Memory usage of the heap is minimized by storing only the monomial of product
terms (as coefficients do not play a role in comparison), and the indices of coefficients
which multiply together to form the product monomial’s corresponding coefficient.

•Comparisons are minimized using heap chaining. Monomials found to be equal are
chained together in a linked list so that only one such monomial is stored in the heap,
reducing heap size, memory usage, and required comparisons for heapsort.

Experimentation

Maple has become the leader in high-performance (integer) polynomial arithmetic
thanks to the work of Monagan and Pearce [3], out-performing many computer algebra
systems like Singular, Trip, and Pari.

We compare BPAS to Maple for arithmetic over Z and Q with varying sparsity.

•All examples have operand polynomials with a maximum coefficient size of 128 bits.

•Division examples have divisors with half the number of terms as dividends.

•A sparsity of 2 is a fully dense polynomial.

50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

Number of Terms (n)

R
u
n
n
in
g
T
im

e
(s
)

Q[x, y, z] Multiplication Running Time

Maple, 100 BPAS, 100

Maple, 50 BPAS, 50

Maple, 2 BPAS, 2

40 60 80 100 120 140 160 180 200 220 240 260 280 300

0

10

20

30

40

50

60

70

80

Number of Dividend Terms (n)

R
u
n
n
in
g
T
im

e
(s
)

Q[x, y, z] Division Running Time

Maple, 30 BPAS, 30

Maple, 15 BPAS, 15

Maple, 2 BPAS, 2

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

1

2

3

4

5

Number of Terms (n)

R
u
n
n
in
g
T
im

e
(s
)

Z[x, y, z] Multiplication Running Time

Maple, 200 BPAS, 200

Maple, 100 BPAS, 100

Maple, 2 BPAS, 2

100 200 300 400 500 600 700 800 900 1,000
0

1

2

3

4

5

Number of Dividend Terms (n)

R
u
n
n
in
g
T
im

e
(s
)

Z[x, y, z] Division Running Time

Maple, 30 BPAS, 30

Maple, 15 BPAS, 15

Maple, 2 BPAS, 2

Toward Polynomial System Solving

Implementing efficient polynomial system solving in BPAS requires first developing the
required underlying algorithms and data structures for triangular sets and regular chains.
The first steps toward this began with developing the TriangularSet class in BPAS.

⊳ TriangularSet ⊲

TriangularSet is the fundamental data structure underlying nonlinear polynomial sys-
tem solving, where solutions are expressed as special kinds of triangular sets. The BPAS
implementation has a number of advantages over its Maple analogue.

•Polynomial rings are handled simply and automatically by the polynomials themselves.

• TriangularSet provides support for both fixed triangular sets (for algebraic compu-
tations) and variable triangular sets (needed in differential algebra computations).

•The class also includes algorithms for pseudo-division and normal form of a polynomial
by a triangular set, both core algorithms for nonlinear system solving.

⊳ RegularChain ⊲

We have also started development of the RegularChain class, required for nonlinear
system solving. This class will support solutions of zero-dimensional systems (solutions
are points) and positive-dimensional systems (solutions are parameterized spaces).

References
[1] Mohammadali Asadi, Alexander Brandt, Robert HC Moir, and Marc Moreno Maza. Sparse polynomial arithmetic with the

BPAS library, 2018.

[2] Stephen C Johnson. Sparse polynomial arithmetic. ACM SIGSAM Bulletin, 8(3):63–71, 1974.

[3] Michael Monagan and Roman Pearce. Parallel sparse polynomial division using heaps. In Proceedings of PASCO 2010, pages
105–111. ACM, 2010.


