
8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 1

Ways to Implement Computer Algebra Ways to Implement Computer Algebra
CompactlyCompactly

A Personal HistoryA Personal History

by
David R. Stoutemyer

July, 2008

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 2

Outline
1. Why I am interested in compact computer algebra.

2. Computers and programmable calculators from 1975-1981.

3. Why compact implementation and data are still important.

4. Special-purpose methods:

a) Univariate polynomials & series via dense coefficient arrays.

b) Finessing computer algebra via evaluation and interpolation.

5. General-purpose methods:

a) String-based computer algebra.

b) Contiguous stack-based computer algebra.

c) Compact linked-data computer algebra.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 3

Why I am interested in compact computer algebra

• Before about 1977, computer algebra was available only on the
largest mainframe computers.

• I wanted my engineering students to become familiar with this tool.

• My entire semester course computing budget was exhausted by the
first assignment on our campus mainframe .

• Beginning 1975, programmable hand-held calculators by TI and
HP, together with the MITS Altair personal computer kit offered
opportunities to implement computer algebra more affordably.

• Computer algebra on hand-held calculators would make it practical
to use in an ordinary classroom on a spontaneous as-needed basis.

For student problems, a compact program is more important than
compact data or speed.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 4

TI and HP hand-held programmable calculators
introduced from 1975-77:

• 49 to 960 interpreted “assembly-
language” steps.

• 8 to 100 direct-address floating-
point variables named, ~ R1 … Rn

• A one-line display just wide
enough to display 1 floating-point
number.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 5

Mass market personal computers from 1977 to 1981
(Apple II, Commodore Pet, TRS-80, Atari 400 & 800)

• 64 kilobyte address space.

• 4 to 16 kilobytes consumed by ROM containing Basic or
a subset of Basic.

• Entry-level systems often came with only 4 to 16
kilobytes of RAM

• 4 kilobytes was enough for about 100 lines of Basic.

• For storage of programs and data: Audio cassette, then
later one or two floppy disk drives holding about 128 kb.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 6

Why compact implementation is still important:

• Hoare’s law of large programs:

“Inside every large program is a small program struggling to
emerge.”

• Incomprehensibility increases with size.

• Development and maintenance time and cost grow with size.

• Carbon footprint grows with silicon footprint.

• Techniques for implementing computer algebra compactly are
relevant to other kinds of programs.

• History is important: “Those who cannot remember the past are
condemned to repeat it.” − Santayana

• # cell phones > # PDAs > # graphing calculators.

• Growth in of cell-phone and internet access speed << Moore’s law.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 7

Special purpose algebra based on coefficient arrays

• Univariate series and polynomials can be implemented
even on the first programmable hand-held calculators.

• Knuth gives algorithms for such polynomials and series in
volume 2 of The Art of Computer Programming.

• Henrici (1977) describes such a series package for the HP
25, which had only 49 program steps and registers for 12
floating-point numbers.

• Unaware of that, I implemented a similar package on the
HP-67, which offered 225 steps and 24 registers.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 8

Size & speed of my 1977 HP-67 Maclaurin series operations

Operation Number of steps Seconds
subtraction 4 20

copying 5 10
negation 10 10
addition 14 10

substitute number 16 10
integration 16 10

multiplication 38 60
division 49 60

reversion 62 180

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 9

• muMath (1978) ran on computers using the Intel 8080 or
Zilog Z-80 processor, with the CP/M operating system
and 32 to 64 kilobytes of RAM.

• These were hobbiest machines rather than mass market,

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 10

• Microsoft licensed muMath for the Radio Shack TRS-80
mass market computer, which used a Z-80 processor.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 11

• In 1980 the Microsoft Z-80 card enabled CP/M and
muMath to run on the Apple II computer.

• To introduce the mass market audience to computer
algebra, I wrote some less ambitious computer algebra
systems in their built-in Basic.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 12

One of them was a shareware
demonstration program:

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 13

PicoMathtm consists of 4 special purpose Basic programs.

Each program ran even on the Radio-Shack pocket
computer (1980) that had only 1.5 kilobytes of RAM.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 14

The Rational program can expand and reduce over a
common denominator a rational expression in x.

.
82

2

3
122

45
107

152
65

and

,
1
1

1
2

1
1

1
11

:exampleFor

2

2

2

2

2

2

2

+
−

→

+
−

++
+−

⋅
−−
−−

−
+

→
−

+
+

−
−

+

x
xx

x
x

xx
xx

xx
xx

x
x

x
x

xx

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 15

The Polynomial program can expand polynomials in x, y
and z, with optional integration or differentiation.

()

() .6

,142857.0)1)(1(

,32627412214
12422126244

166)1()1()1(

:exampleFor

35236

2472433

2234

23222233

456246

yxzxyx
dx
d

xxzxyxdxzyxx

zzyyzyyyxxzxy
xyxyxyxyxxyx

xxxzyxyxx

+→++

−++→+++−

+++++++++++
+++++++

++→++++++++

∫

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 16

The Trigonometric program can expand, many trigonometric
expressions in x and y, with optional integration or differentiation.

()

).sin(4
)sin(
)2sin(

)cos(
)2cos(1

,1)tan(
)2/sin(
)2/3cos(

)cos(
2/3sin

),cos()sin(
2

cos
2

sin2

:exampleFor

x
x
x

x
x

dx
d

x
x
x

x
x

xyxdxyxyx

−→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

+−→
+
−

+
+

+

−⋅→⎟
⎠
⎞

⎜
⎝
⎛ −

⋅⎟
⎠
⎞

⎜
⎝
⎛ +

∫

π
π

π
π

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 17

The Fourier program implements trigonometric collection
for polynomials in sinusoids of x, with optional
integration or differentiation:

()).5sin(5)cos(5)cos(4)cos()2sin(4

),5sin(2.0)cos(5)cos(4)cos()2sin(4

),7cos()5cos()3cos(3)cos(3)cos()sin(64

:exampleFor

32

32

4

xxxxx
dx
d

xdxxxxx

xxxxxx

→+−−

→+−−

+−−→

∫

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 18

All four programs begin with the lines:
10 GOTO 40
20 A=expression the user wants simplified, integrated or differentiated
30 RETURN
40 …
No computer-algebra parsing is required: The program calls

subroutine 20 for different pre-selected values of the independent
variable(s), then interpolates an expression of the implemented class.

If the expression on line 20 and the interpolated expression have
relatively close values at some additional points, then the coefficients
of the interpolant are displayed separated by string constants such as
“x^2 +” or “cos(x) +” to display the simplified, integrated or
differentiated expression.

Otherwise a message is displayed encouraging the user to edit the
expression on line 20 to be equivalent to the appropriate class.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 19

General-purpose Methods.
A: String-based computer algebra.

• It is possible to do computer algebra directly on strings
containing expressions in ordinary infix notation.

• D. Strebe wrote such a program for the HP-41 hand-held
calculator in 1980.

• There were several earlier compact programs for doing
differentiation using the pioneering string-processing
language Snobol.

• Although there is the advantage of using the same
representation internally as for I/O, it is inefficient to
repeatedly scan to locate operators between operands.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 20

General-purpose Methods
B: Contiguous stack-based computer algebra.

• Expression trees can be represented in Polish as a
contiguous stack of tokens containing no parentheses.

• A parser can convert a string such as “(sin x + cos x)2 – 1”
into a stack of tokens such as – 1 ^ + sin x cos x 2, with 2
at the bottom and the “–” at the top.

• Computer algebra can be done directly on this Polish
representation, producing a simplified Polish
representation such as ⋅ 2 ⋅ sin x cos x.

• This simplified Polish representation can then be
converted for display into the string “2⋅sin x⋅cos x”.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 21

Calculus Demon
used this method:

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 22

Calculus Demon for the Atari 400 and 800 computers:
• About 800 lines of Basic, several statements per line.
• It can differentiate, modestly integrate and simplify multivariate

general expressions, including fractional powers, exponentials,
logarithms, trigonometric functions and their inverses: Formac Jr.

• Optional transformations include polynomial expansion and
trigonometric collection.

• The stack of Polish expressions is an array of floats.
• Tags: 0.0 means the float below it represents a number, 1.0 through

26.0 represent shifted character codes of one-letter variables, 27.0
means the expression below it is the argument of LN, etc.

• These tags for numbers and variables, unary operators and
functions, then binary operators and functions are grouped together
so that mere range checks determine the number of operands or
arguments.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 23

More details about Calculus Demon
symbol: a b y z P

index: 0 top of stack T

• The deepest 26 elements of the expression stack, indexed 0 through
25 are a symbol table of indices for values of user variables a
through z.

• A table entry of 0.0 means the corresponding variable has no
assigned symbol value.

• Assigned values are stored contiguously above that.
• The working stack where simplified results are developed is above

the assigned values.
• To save time, indices of deeper operands are saved into local

variables. (A remember stack rather than a pure stack discipline.)

0. • … • 0. value
of y

value
of b

intermediate
expression1

…

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 24

The computer algebra in TI products uses this method, but:

• It is written in C rather than Basic.

• Rather than floating point, the expression stack is of 8, 16
or 32 bit unsigned integers, depending on the product.

• Numbers are fixed-precision BCD floats or arbitrary-
precision rational numbers containing length fields.

• It is significantly more powerful than Calculus Demon –
roughly comparable overall to Derive.

• More implementation details are available in the TI-89/TI-
92 Plus Developers Guide at

http://education.ti.com/educationportal

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 25

The TI-92, released in 1995

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 26

TI-Nspire™ Applications

Lists and Spreadsheet

Data and StatisticsOptional CAS

Notes

Graphs & Geometry

PC, Macintosh and handheld:
Same functionality

Exercises & Exams
Programming Data Collection

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 27

Some advantages of contiguous Polish
over linked storage:

• No space is wasted on pointers within an expression.

• Contiguous data improves speed for caches and virtual
memory.

• The data is relocatable, which is also good for
serialization.

• It isn’t necessary to implement garbage collection or
reference counts.

• There are no annoying pauses for garbage collection
during plotting, etc., making it particularly suitable for
real-time applications.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 28

Some disadvantages compared to linked storage:

• There is no sharing of common sub-expressions within an
expression.

• Access is slower to deeper operands to which pointers
haven’t been saved into local variables.

• Deletion of garbage on the stack is a ubiquitous
responsibility: Almost every procedure must leave no
garbage between what was the top of the expression stack
upon entry and any alleged result expressions left above
that upon exit.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 29

C: Implementing linked-data computer algebra compactly:
Lisp-like languages have advantages for implementing CAS:
• They include a built-in garbage collector that is fast even for small

blocks consisting of two pointers, which are most common.
• They include arbitrary-precision arithmetic.
• They include built-in data-base primitives for fast querying of

information about variables and operators, such as their type,
precedence, associativity, commutativity, linearity and symmetries.

• They include an interpreter that permits run-time definition of new
functions and operators.

• They include powerful mapping functions that efficiently factor out
common looping or recurrence code-space overhead.

These features can be added to C or C++, but that additional work
must be done efficiently before implementing computer algebra.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 30

Features of muLisp that lead to compact implementation (and speed):

• Symbols that don’t have assigned values evaluate to themselves
rather than an error. This is what you want for computer algebra.

• Excess trailing formal parameters are local variables initialed to Nil.
• ((functionName1 …) …) (Cond ((functionName1 …) …)

… ≡ …
((functionNamen …) …) ((functionNamen …) …))

(((functionName1 …) …) (ProgN (Cond ((functionName1 …) …)
… ≡ …

((functionNamen …)…)) ((functionNamen…)…)))

• Cons cells, symbols, their print names, numbers and their binary
data are stored in separate contiguous areas so that type-checking
can be done by mere comparison with boundary addresses.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 31

More features of muLisp for compactness and speed:

• If necessary, region sizes are reallocated.

• Atoms and Cons cells are aligned on even addresses so that the least
significant bit of addresses can be used as a temporary marker bit.

• Function definition are Cdr-coded: Lists in function bodies are
arrays of pointers rather than linked Cons cells. The least
significant bit of a pointer is 1 iff it is the last pointer in an array.

• If two or more pointers in a function definition point to syntactically
identical forms, only one copy of that form is stored.

• This condensing process can optionally be done between functions
too, and such functions are excluded from garbage collection,
saving time.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 32

Still more features of muLisp for compactness and speed:

• (Zap-string symbol) replaces the symbol’s print-string with the null
string.

• Zapping non-public function and variable names as the last step in a
program definition saves space.

• The assembly-language implementation of the muLisp interpreter is
exceptionally fast and space efficient:

• The compiler was used only for a few bottom-level computer
algebra functions that were invoked very frequently and didn’t
invoke other time-consuming functions.

• (Compilation increased code size by about a factor of 2 to 3, while
increasing speed by at most a similar factor.)

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 33

Features of muMath for compact implementation and speed:
• Many algorithms were implemented incrementally by putting on the

property list of the function or operator name several small
functions for handling different kinds of operands.

• For example, there were separate functions for differentiating
numbers, variables, sums, etc., making it easy for users to add
differentiation of Bessel functions etc. without doing surgery on a
large monolithic function.

• The assembly-language Assoc function did the dispatching, so it
was faster than interpreting conditional branches.

• Each muLisp arithmetic function invoked an associated trap
function to optionally catch error throws for non-numeric
arguments. Each muMath trap function dispatched to separate
functions for adding a number to a variable, a sum to a product etc.

• Thus the most common case of combining numbers is tried first in
machine language rather than after an interpreted test.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 34

muMath was bundled with the first commerical luggable
computer in 1981

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 35

muLisp for the Intel 8086 and 8088
• The first mass-market PC that could address more than 64 kilobytes

was the IBM-PC, introduced in 1981, which used the Intel 8088.
• MS-DOS left 640 kilobytes for implementing muLisp and muMath.
• The memory was segmented into 64-kilobyte segments: 16-bit

offsets were automatically added to the contents of an appropriate
20-bit segment register to determine addresses.

• We used the data segment for 16-bit Cars, the extra segment for 16-
bit Cdrs, and the stack segment for return and argument offsets.

• There could be up to 6 segments for Cdr-coded function definitions.
• When added to the code-segment register, the first 16-bit offset in

each function definition was a pointer to the symbol Lambda.
• Gaps were inserted if necessary so that this happened in only one

code segment. If it didn’t happen with the current segment,
successive code segments were tried until it did happen.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 36

Derive for MS-DOS
• muMath had a teletype-style interface, like MS-DOS.
• Most potential users also wanted expression plots, 2D display of

results and a windowing menu-driven interface.
• So we introduced Derive with its own windowing system in 1988 as

replacement for muMath.
• We needed approximate arithmetic not only for plots, but also for

approximate integration, equation solving etc.
• We already had exact rational arithmetic.
• Therefore rounded rational arithmetic was the most compact way

to introduce approximate arithmetic, and it was easy to make it have
adjustable precision.

• At the default 6 digits of precision, which was sufficient for most
plots, it was about the same speed as the then-prevalent 8 to 16 digit
software floating point, so plot speed was about the same.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 37

There was a ROM version of Derive for DOS for the HP 95LX

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 38

Derive for Windows
• The Intel 386 was the first x86 processor to support an unsegmented

32-bit address space and to make Microsoft Windows acceptable.

• So we implemented a 386 assembly-language version of muLisp
that employed full 32-bit addresses.

• Using this together with C++, we wrote a Windows interface for the
Derive engine.

• By this time floating-point processors were common, and plotting
speed with floating-point hardware was dramatically faster than
software rounded rational arithmetic.

• Therefore we implemented a muLisp function that created a
contiguous reverse Polish version of a Derive expression, together
with a C function that could evaluate the reverse Polish using IEEE
floating point arithmetic.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 39

Summary
There are many ways to implement computer algebra

compactly:
1. Special-purpose methods:

a) Univariate polynomials and series using dense
coefficient arrays.

b) Finessing computer algebra via evaluation and
interpolation.

2. General-purpose methods:
a) String-based computer algebra.
b) Contiguous stack-based computer algebra.
c) Compact linked-data computer algebra.

8/9/2008 Stoutemyer, Ways to implement computer algebra compactly 40

Final Exam:

What is wrong

with this picture?

	Ways to Implement Computer Algebra Compactly���A Personal History
	TI and HP hand-held programmable calculators introduced from 1975-77:
	Size & speed of my 1977 HP-67 Maclaurin series operations

