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Hypergraphs

◮ For a finite set V of vertices, H = (V , E) is a hypergraph if E
(called hyperedges) is a collection of subsets of V .

Example: H = (123456, {12, 234, 345, 56}).

Note: a hyperedge can have more than two vertices.

◮ A subset T of V is a transversal (or hitting set) of H if it
intersects all the hyperedges of H, i.e. T∩E 6= ∅, ∀E ∈ E .

A transversal T of H is minimal if no proper subset of T is a
transversal of H.

Example: {25} is a minimal transversal of H; {235} is a
transversal but not minimal.
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Transversal Hypergraph Generation (THG)

◮ The transversal hypergraph Tr(H) is the family of all minimal
transversals of H.

Example: H = (123456, {12, 234, 345, 56}),
Tr(H) = (123456, {135, 136, 145, 146, 236, 246, 25}).

Note: the size (number of edges) of Tr(H) can be exponential
in the order of H (number of vertices).

◮ The transversal hypergraph generation problem is to
compute Tr(H), given a hypergraph H.

◮ Numerous applications: data mining, computational biology,
artificial intelligence and logic, cryptography, semantic web,
mobile communication systems, e-commerce, etc.
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◮ Many publications: Eiter (1995), Dong (1999-2005),
Gunopulos (1997), Boros (2002), Bailey (2003), etc.

◮ Emerging patterns (EPs): itemsets whose frequency of
occurrence, differs substantially between two sets of data, i.e.
minimal infrequent itemsets.
Example: ”Lung-cancer incidence rate among smokers is 14
times that of nonsmokers.”

◮ Introduced by Dong and Li (1999) as a means of contrasting
disjoint sets of relational data.

◮ Example [Bailey, 2003]: given two classes of transactions
A = {{a, f , h, j}, {c , f , h, j}, {b, d , g , j}, {c , e, g , j}},

B = {{a, d , g , j}, {a, d , g , i}, {c , f , h, i}, {a, e, g , j}}.

Question: what are the minimal contrasts between them?

Answer: {af , ah, fj , hj}, {cj , fj , hj}, {b}, {ce, cg , cj}.
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◮ How to find the minimal contrasts
{af , ah, fj , hj}, {cj , fj , hj}, {b}, {ce, cg , cj}, given

A = {{a, f , h, j}, {c , f , h, j}, {b, d , g , j}, {c , e, g , j}}

B = {{a, d , g , j}, {a, d , g , i}, {c , f , h, i}, {a, e, g , j}}?

◮ Relationship to hypergraphs: for each transaction t in A, we
construct a hypergraph H = (V , E), where V consists of the
elements of t, and Ei = t \ ti for each ti ∈ B . Then, Tr(H)
corresponds precisely the contrast patterns for t.

◮ For instance, for the first transaction in A, we have

t = {a, f , h, j},

H = (afhj , {fh, fhj , aj , fh}),

Tr(H) = (afhj , {af , ah, fj , hj})

ja

f h
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◮ A metabolic network is a set of metabolites (species) that can
be inter-converted by biochemical reactions.

◮ Let Q = {q1, . . . , qn} be the reactions and S = {s1, . . . , sm}
the species. A metabolic network can be described by a m× n

matrix N where Nij is the rate of si in the reaction qj .

Example: a metet with 5 reactions and 4 species, and N as

PYR NADH H LAC NAD

C 3 0 0 3 0
H 4 1 1 6 0
O 3 0 0 3 0

NAD 0 1 0 0 1

◮ A steady state (or equilibrium) is any vector ~x ∈ R
n such that

~x 6= ~O and N~x = ~O.
Example: ~x = t

(

−1 −1 −1 1 1
)

.
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◮ For a steady state ~x , the set supp(~x) := {q ∈ Q | xq 6= 0}
represents the reactions involved in ~x .

◮ A non-empty subset X ⊆ Q is an elementary mode if there
exists ~x ∈ R

n such that X = supp(~x) and X is ⊆-minimal
with this property.

◮ Elementary modes are the fundamental states of a metabolic
network. They can be efficiently computed from the matrix N

using optimization techniques (Gagneur and Klamt, 2004).
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◮ Let T ⊂ Q be a set of target reactions to be avoided.

A cut set is a subset C ⊂ Q such that for a steady state ~x :

supp(~x) ⊆ Q \ C ⇒ supp(~x) ⊆ Q \ T

Let K denote the cut sets that are ⊆-minimal. Computing K
is practically important.

◮ Proposition. Let E denote the elementary modes X such
that X ∩ T 6= ∅. Then, we have:

C ∈ K ⇐⇒ (∀X ∈ E) X ∩ C 6= ∅.

That is, in hypergraph terms, K = Tr(E).
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H′ ∨H′′ = (V , {E ′ ∪ E ′′ | (E ′,E ′′) ∈ E ′ × E ′′}),

and Min(H′) returns the edges of H′ that are ⊆-minimal.

This algorithm suggests an incremental approach. More
precisely, let E = {E1, . . . , Em} and Hi = (V , {E1, . . . ,Ei})
for i = 1 · · ·m. Then,

Tr(Hi+1) = Min(Tr(Hi ) ∨ (V , {{v} | v ∈ Ei+1})).
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◮ Dong and Li’s border differential algorithm (DL, 1999-2005):
– reminiscent of Berge’s;
– processes edges 1-by-1, in increasing order of cardinality;
– program performs well with only a few edges of small size.

◮ Bailey, Manoukian and Ramamohanarao (BMR03):
– a divide-n-conquer approach, recursively partitioning the
edge set by the frequency of the vertices involved;

– use DL-Algorithm to compute the transversal for small-size
hypergraphs; Store intermediate minimal transversals;

– program was 9 to 29 times faster than DL’s.

◮ Fredman and Khachiyan’s algorithm (1996), implemented
by Boros, Elbassioni, Gurvich and Khachiyan (BEGK03):
– test the duality of a pair of monotone boolean functions;
– incremental quasi-polynomial time algorithm.
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◮ Kavvadias and Stavropoulos (KS05):
– Berge’s algorithm combined with techniques to overcome
the potentially exponential memory requirement:
generalized and appropriate vertices, depth-first strategy.

– program outperformed BEGK and BMR for small to medium
size problems, and was competitive for large size problems.

◮ Khachiyan et al. (2006):
– theoretical study on global parallelism for hypergraphs of
bounded edge size k ;

– CREW-PRAM model; polylog(|V |, |H|, k) time assuming
poly(|V |, |H|, k) number of processors.

◮ Lower Bounds:
Takata (2007): Berge’s algorithm is not output-polynomial;
Hagen (2008): None of BMR03, DL05 and KS05 is.
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Our Parallel Transversal Algorithm: ParTran

◮ Apply Berge’s formula in a divide-n-conquer manner where H′

and H′′ are of similar order.

Tr(H′∪H′′) = Min(Tr(H′) ∨ Tr(H′′))

◮ Compute H′ ∨H′′ also in a divide-n-conquer manner as a
Cartesian product traversal, and apply Min to intermediate
results so as to control expression swell.

◮ Compute Min, again in a divide-n-conquer manner.

◮ Parallelism is created by the divide-n-conquer recursive calls.



The Core Operation: Min

◮ We describe a procedure ParMinPoset, in the following, for
parallel computation of the minimal elements of a partially
ordered set.

◮ Our computations for Tr(H) and H′ ∨H′′ follow the same
scheme.



Partially Ordered Set (POSET)

◮ (A,�) is a poset if � is a binary relation on A which is
reflexive, antisymmetric, and transitive.

◮ x ∈ A is minimal for � if for all y ∈ A we have:
y�x ⇒ y = x .

◮ Min(A,�), or simply Min(A) designates the set of the
minimal elements of A.

◮ A poset example for the integer divisibility relation:

4 6 9

2 3

8 12



A Simple Procedure but . . .

Algorithm 1: SerMinPoset

Input : a poset A = {a0, · · · , an−1}
Output : Min(A)

for i from 0 to n−2 do
if ai is not marked then

for j from i+1 to n−1 do
if aj is not marked then

if aj � ai then
mark ai ; break inner loop

if ai � aj then
mark aj

A← {unmarked elements in A}
return A

◮ Poor locality: A is scanned for n times, Q(n) = Θ(n2/L).

◮ Parallelizing these loops require locks.



Challenges and Solutions

N Improve data locality, say cache complexity Q(n) ∈ O( n
2

ZL
)

instead of Θ(n2/L); Z and L are the cache size and line size.

N Load balancing.

N Obtain good scalability on multi-cores.

N Handle very large poset, say n ≃ 107.



Challenges and Solutions

N Improve data locality, say cache complexity Q(n) ∈ O( n
2

ZL
)

instead of Θ(n2/L); Z and L are the cache size and line size.

N Load balancing.

N Obtain good scalability on multi-cores.

N Handle very large poset, say n ≃ 107.

N Traverse the iteration space in a divide-n-conquer manner
(Matteo Frigo’s techniques for cache oblivious stencil
computations and N-body problems (2005)).

N Generate A and compute Min(A) concurrently.



Parallel Min Algorithm

Algorithm 2: ParMinPoset(A)

if |A| ≤ MIN BASE then
return SerMinPoset(A)

(A−,A+)← Split(A)
A− ← spawn ParMinPoset(A−)
A+ ← spawn ParMinPoset(A+)
sync
(A−,A+)← ParMinMerge(A−,A+)
return Union(A−,A+)

*MIN BASE must be large enough to reduce parallelization overheads

and small enough to increase data locality.



Parallel Merge of Min(B) and Min(C ) (1/2)

Algorithm 3: ParMinMerge(B ,C ) for Min(B) = B and Min(C ) = C

if |B | ≤ MIN MERGE BASE and |C | ≤ MIN MERGE BASE then
return SerMinMerge(B ,C )

else if |B | > MIN MERGE BASE and |C | > MIN MERGE BASE then
(B−,B+)← Split(B); (C−,C+)← Split(C )
(B−,C−)← spawn ParMinMerge(B−,C−)
(B+,C+)← spawn ParMinMerge(B+,C+)
sync
(B−,C+)← spawn ParMinMerge(B−,C+)
(B+,C−)← spawn ParMinMerge(B+,C−)
sync
return (Union(B−,B+),Union(C−,C+))

. . . . . . . . .



Parallel Merge of Min(B) and Min(C ) (2/2)

Algorithm 4: ParMinMerge(B ,C ) for Min(B) = B and Min(C ) = C

if |B | ≤ MIN MERGE BASE and |C | ≤ MIN MERGE BASE then
. . . . . . . . .

else if |B | > MIN MERGE BASE and |C | > MIN MERGE BASE then
. . . . . . . . .

else if |B | > MIN MERGE BASE and

|C | ≤ MIN MERGE BASE then
(B−,B+)← Split(B)
(B−,C )← ParMinMerge(B−,C )
(B+,C )← ParMinMerge(B+,C )
return (Union(B−,B+),C )

. . . . . . . . .



Complexity Results

◮ Our results are for the fork-join multi-threading parallelism
(M. Frigo, C. E. Leiserson, and K. H. Randall, 1998) and the
ideal cache model (M. Frigo, C. E. Leiserson, H. Prokop, &
S. Ramachandran, 1999)

◮ The worst case occurs when A = Min(A) holds.

◮ In this case, setting all thresholds to one, we have:

◮ the cache complexity Q(n) ∈ Θ( n2

ZL
+ n

L
)

◮ the work T1(n) ∈ Θ(n2)

◮ the critical path (or span) T∞(n) ∈ Θ(n)

◮ and thus the parallelism is Θ(n)
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ParTran: Example

◮ Tr(H) = Min(Tr(E1 ∪ E2) ∨ Tr(E3 ∪ E4))

◮ Tr(E1 ∪ E2) = Min(Tr(E1) ∨ Tr(E2)) = Min({1, 2} ∨ {2, 3, 4})

Tr(E3 ∪ E4) = Min(Tr(E3) ∨ Tr(E4)) = Min({3, 4, 5} ∨ {5, 6})

◮ Min({1, 2} ∨ {2, 3, 4})
= MinMerge({Min({1} ∨ {2, 3}) , Min({2} ∨ {4})},

{Min({1} ∨ {4}) , Min({2} ∨ {2, 3})})
= MinMerge({12, 13, 24}, {14, 2}) = {13, 14, 2}

Min({3, 4, 5} ∨ {5, 6})
= MinMerge( · · · ) = · · · = {36, 46, 5}

◮ Tr(H) = Min(Tr(E1 ∪ E2) ∨ Tr(E3 ∪ E4))
= Min({13, 14, 2} ∨ {36, 46, 5}) = MinMerge( · · · )
= {135, 136, 145, 146, 236, 246, 25}



Solving some Well-known Problems

Parameters BEGK BMR *KS ParTran ParTran’s Gain

n m t (s) (s) (s) 1P(s) 32P(s) KS/1P KS/32P

Threshold hypergraphs

140 4900 71 22 194 11 0.01 - 1000 -
160 6400 81 40 460 23 0.01 - 2000 -
180 8100 91 75 1000 44 0.01 - 4000 -
200 10000 101 289 1968 82 0.02 - 4000 -

Dual Matching hypergraphs

34 131072 17 911 2360 57 9 0.6 6 100
36 262144 18 2188 12463 197 23 1.8 9 110
38 524288 19 8756 36600 655 56 3.5 12 186
40 1048576 20 35171 201142 2167 131 7.1 17 304

Data Mining hypergraphs

287 48226 97 1332 1241 1648 92 3 18 549
287 92699 99 4388 4280 6672 651 21 10 318
287 108721 99 5898 7238 9331 1146 36 8 259

*KS: Kavvadias and Stavropoulos, http://lca.ceid.upatras.gr/estavrop/transversal/.

(Journal of Graph Algorithms and Applications, 9(2):239-264, 2005).
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Solving some Classical Hypergraphs

Kuratowski Hypergraphs (K r
n)

Parameters KS ParTran

n r m t (s) 1P 16P 32P

(s) (s) Speedup (s) Speedup

30 5 142506 27405 6500 88 6 14.7 3.5 25.0

40 5 658008 91390 >15 hr 915 58 15.8 30 30.5

30 7 2035800 593775 >15 hr 72465 4648 15.6 2320 31.2

Lovasz Hypergraphs
Parameters KS ParTran

n r m t (s) 1P 16P 32P

(s) (s) Speedup (s) Speedup

36 8 69281 69281 8000 119 13 8.9 10 11.5

45 9 623530 623530 >15 hr 8765 609 14.2 347 25.3

55 10 6235301 6235301 >15 hr - 60509 - 30596 -
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Conclusion and Work in Progress

◮ We provide a parallel algorithm and an implementation for
computing the transversal of hypergraphs targeting
multi-cores.

◮ Our program performs well on a number of large problems.

◮ We have identified the computation of the minimal elements

of a poset as a core routine in many applications. Up to our
knowledge, we provide the first parallel and cache-efficient
algorithm for this task.

◮ Work in progress:
– apply the techniques of Kavvadias and Stavropoulos (and
others) to improve the performance of our program for
some small size hypergraphs.

– attack other graph-theoretic algorithms and their
applications.
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Incremental Approach: Example

◮ Tr(H1) = {1, 2}

◮ Tr(H2) = Min({1, 2} ∨ {2, 3, 4})
= Min({12, 13, 14, 2, 23, 24}) = {13, 14, 2}

◮ Tr(H3) = Min({13, 14, 2} ∨ {3, 4, 5})
= Min({13, 134, 135, 143, 14, 145, 23, 24, 25})
= {13, 14, 23, 24, 25}

◮ Tr(H3) = Min({13, 14, 23, 24, 25} ∨ {5, 6})
= Min({135, 136, 145, 146, 235, 236, 245, 246, 25, 256})
= {135, 136, 145, 146, 236, 246, 25}

Note: the growth of the intermediate expression!



Parallel Tr(H) Top Algorithm

Algorithm 5: ParTran

if |H| ≤ TR BASE then
return SerTran(H);

(H−,H+)← Split(H)
H− ← spawn ParTran(H−)
H+ ← spawn ParTran(H+)
sync
return ParHypMerge(H−,H+)


