Parsing Algorithms 2: LR Parsing

CS 447 -- Stephen Watt
University of Western Ontario
Readings

- Purple Dragon Chapter 3. Lexical analysis
- Purple Dragon Chapter 4. Parsing
LR(k) Parsing

Left-to-right scan, Right-most derivation, with k tokens of look-ahead.

+ Most general non-backtracking shift-reduce parsers
+ Larger class of grammars than LL parsing
+ Detect syntax errors as soon as possible with left-to-right scan
- Tables not suitable to build by hand
Three Methods

• SLR – simple LR.
 Easiest to implement; least powerful.

• Canonical LR.
 Hard to implement; most powerful.

• LALR – look ahead LR.
 Relatively easy to implement; quite powerful.
Overall Idea

- Input string of tokens
- Stack of parser states
- Action and Goto tables
- Parsing engine
The LR Parsing Engine

- Stack contains
 - \(X[i] \) grammar symbols
 - \(s[i] \) “states”

- Action table gives, for each \((s[i], a[j])\) pair, one of
 - *shift* \(s[j] \), for some state \(j \)
 - *reduce* \(A \rightarrow \beta \), for some production of the grammar
 - *accept* parsing is finished
 - *error* parser has discovered an error

- Goto table gives, for each state + grammar symbol, a new state.
Parser Configurations

• A pair
 – Stack contents
 – Rest of input
• For our figure
 \[(s_0 \ X_1 \ s_1 \ X_2 \ s_2 \ \ldots \ \ X_m \ s_m , \ \ a_k \ a_{k+1} \ \ldots \ \ a_n \ \$)\]
• This corresponds to a mid-derivation form
 \[X_1 \ X_2 \ \ldots \ \ X_m \ \ a_k \ a_{k+1} \ \ldots \ \ a_n \ \$\]
 interleaved with parser states.
Parser Action

Config = (s0 X1 s1 X2 s2 ... Xm sm, ak ak+1 ... an $)

• If Action(s[m], a[k]) == shift s.
 s = Goto(s[m], a[k])
 Config = (s0 X1 s1 X2 s2 ... Xm sm ak s, ak+1 ... an $)

• If Action(s[m], a[k]) == reduce A → β
 r = |β|
 s = Goto(s[m-r], A)
 Config = (s0 X1 s1 X2 s2 ... Xm-r sm-r A s, ak+1 ... an $)

• If Action(s[m], a[k]) == accept
 accept

• If Action(s[m], a[k]) == error
 halt, or attempt error recovery
1. E → E “+” T
2. E → T
3. T → T “*” F
4. T → F
5. F → “(” E “)"
6. F → id

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Id</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>s5</td>
<td>s4</td>
</tr>
<tr>
<td>1</td>
<td>s6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>r2</td>
<td>s7</td>
</tr>
<tr>
<td>3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>4</td>
<td>s5</td>
<td>s4</td>
</tr>
<tr>
<td>5</td>
<td>r6</td>
<td>r6</td>
</tr>
<tr>
<td>6</td>
<td>s5</td>
<td>s4</td>
</tr>
<tr>
<td>7</td>
<td>s5</td>
<td>s4</td>
</tr>
<tr>
<td>8</td>
<td>s6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>s7</td>
</tr>
<tr>
<td>10</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>11</td>
<td>r5</td>
<td>r5</td>
</tr>
</tbody>
</table>
Constructing Parsing Tables

• Build a Finite Automaton to recognize viable prefixes of rules.
• LR(0) items:

 E → • E “+” T

 E → E • “+” T

 E → E “+” • T

 E → E “+” T •

• Indicates how much of production has been seen
• Can be represented as (production #, dot position)
Closure of an Item Set

Given set of items I for grammar G, $\text{closure}(I)$ is the set formed by:

- All elements of I are in $\text{closure}(I)$
- If $A \rightarrow \alpha \cdot B \beta$ is in $\text{closure}(I)$ and $B \rightarrow \gamma$ is a production in G, then $B \rightarrow \cdot \gamma$ is in $\text{closure}(I)$

$\text{closure}(I)$ captures the idea of finding all the rules that might be applicable at a given point.
Closure Example

• Augment previous grammar with $E' \rightarrow E$.
• Closure of $\{E' \rightarrow \cdot E\}$ is

$$\{E' \rightarrow \cdot E, \quad E \rightarrow \cdot E \quad + \quad T, \quad E \rightarrow \cdot T, \quad T \rightarrow \cdot T \quad * \quad F, \quad T \rightarrow \cdot F, \quad F \rightarrow \cdot \quad (\quad E \quad), \quad F \rightarrow \cdot \quad \text{id}\}$$
The Goto Operation

- Goto(\(I, X\)) for an item set \(I\) and grammar symbol \(X\), is the set of items obtained by “moving the dot past \(X\)” in the items.

\[J := \{ \} \]

for all \(A \rightarrow \alpha \cdot X \beta\) in \(I\), add \(A \rightarrow \alpha X \beta\) to \(J\).

return closure(\(J\)).
Constructing the Automaton

Initialize T to \{ \text{closure(} \{ S' \rightarrow \cdot \cdot S \}) \} \\
Initialize E to \{ \} \\
repeat \\
 for each state I in T \\
 for each item A \rightarrow \alpha \cdot X \beta \text{ in I} \\
 J := \text{Goto}(I,X) \\
 T := T \cup \{ J \} \\
 E := E \cup \{ I \rightarrow[X] J \} \\
until E and T do not change \\

Note that for X = $ we do not compute Goto(I,\$). \\
Instead we make an accept action.
Constructing the Tables

• For each edge $I \rightarrow [X] J$
 – If X is a terminal,
 put the action **shift** J at position (I,X) of the table.
 – If X is a nonterminal,
 put **goto** J at position (I,X)
• For each state I containing an item $S' \rightarrow S \cdot \$$,
 – put an accept action at $(I, \$$)
• For a state containing $A \rightarrow \gamma \cdot$
 (production n with a dot at the end),
 put **reduce** n at (I, K) for every token K.
LR(1) Items

• Some languages cannot be handled with LR(0). Some look-ahead is needed.
• An LR(1) item is of the form

\[A \rightarrow \alpha \bullet \beta , \ a, \]\n
for \(A \) a non-terminal, \(a \) a terminal, \(\alpha \) and \(\beta \) strings of terminals and non-terminals.
• The terminal \(a \) is the “look-ahead”.

It has no effect when \(\beta \) is non-empty.

When \(\beta \) is empty, i.e. for \([A \rightarrow \alpha \bullet , \ a]\), the item says to reduce the production \(A \rightarrow \alpha \bullet \).
Closure with LR(1) Items

• Compute the closure of a set \(I \) of LR(1) in items with grammar \(G' \) as follows:

\[
\text{Closure}(I) == \{ \\
\quad \text{repeat} \\
\quad \quad \text{for each item } [A \rightarrow \alpha \bullet B \beta, a] \text{ in } I \text{ repeat} \\
\quad \quad \quad \text{for each production } B \rightarrow \gamma \text{ in } G' \text{ repeat} \\
\quad \quad \quad \quad \text{for each terminal } b \text{ in FIRST}(\beta a) \text{ repeat} \\
\quad \quad \quad \quad \quad I := I \cup \{ [B \rightarrow \bullet \gamma, b] \} \\
\quad \quad \text{until } I \text{ stops growing} \\
\quad \text{return } I \\
\}\n\]
Goto with LR(1) Items

• Compute the goto of a set I of LR(1) in items with grammar G' as follows:

$$
\text{Goto}(I, X) == \{ \\
\quad J := \{ \} \\
\quad \text{for each item } [A \rightarrow \alpha \bullet X\beta, a] \text{ in } I \text{ repeat} \\
\quad \quad J := J \cup \{ [A \rightarrow \alpha X\bullet \beta, a] \} \\
\quad \text{return } \text{Closure}(J) \\
\}$$
Many potential LR(1) items will not be used. Compute the needed ones as follows:

\[
\text{Items}(G') == \{ \\
C := \{ \text{Closure}(\{ [S' \rightarrow \bullet S, \$] \}) \} \\
\text{repeat} \\
\quad \text{for each item set } I \text{ in } C \text{ repeat} \\
\quad \quad \text{for each grammar symbol } X \text{ repeat} \\
\quad \quad \quad J := \text{Goto}[I,X] \\
\quad \quad \quad \text{if } J \text{ nonempty and } J \text{ not in } C \text{ then } C := C \cup \{ J \} \\
\quad \text{until } C \text{ stops growing}
\]
Constructing an LR(1) Parser

• To build the automaton, use the new definitions of Closure and Goto in the previous algorithm.

• To build the tables, change

 For a state containing $A \rightarrow \gamma \cdot$
 (production n with a dot at the end),
 put $reduce \ n$ at (I, K) for every token K.

 to

 For a state containing $A \rightarrow [\gamma \cdot, a]$
 (production n with a dot at the end),
 put $reduce \ n$ at (I, a).