Next: About this document ... Up: Description of Reid's Research Previous: Solving PDEs

Bibliography

 

1
Ara{\v{\i\/}}\kern.15ems, E.A., V.P. Šapeev and N.N. Janenko. 1974. Realization of Cartan's method of exterior differential forms on an electronic computer, Sov. Math. Dokl. 15(1) 203-205.

 

 

2
Auslander, L. and R.E. MacKenzie. 1963. Introduction to Differentiable Manifolds. (McGraw-Hill, New York).

 

 

3
Bluman, G.W. and J.D. Cole. 1969. The general similarity solution of the heat equation, J. Math. Mech. 18 1025-1042.

 

 

4
Bluman, G.W. and S. Kumei. 1989. Symmetries and Differential Equations. (Springer Verlag, New York).

 

 

5
Boulier, F., D. Lazard, F. Ollivier and M. Petitot. 1995. Representation for the radical of a finitely generated differential ideal. Proc. ISSAC 1995. ACM Press. 158-166.

 

 

6
Brenan, K., S. Campbell and L. Petzold. 1989. Numerical Solutions of Initial-Value Problems in Differential-Algebraic Equations. (Elsevier Science Publishers, North-Holland).

 

 

7
Bryant, R.L., S.S. Chern, R.B. Gardner, H.L. Goldschmidt and P.A. Griffiths. 1991. Exterior Differential Systems, Mathematical Sciences Research Institute Publications 18 (Springer Verlag, New York).

 

 

8
Becker, T., V. Weispfenning. 1993. Gröbner bases: a computational approach to commutative algebra. (Springer Verlag, New York)

 

 

9
Bocharov, A.V. and M.L. Bronstein. 1989. Efficiently implementing two methods of the geometrical theory of differential equations: an experience in algorithm and software design, Acta Appl. Math. 16 143-166.

 

 

10
Buchberger, B. 1965. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal (German), PhD. Thesis, Univ. of Innsbruck, Math. Inst.

 

 

11
Carrà-Ferro, G. 1987. Gröbner Bases and Differential Algebra, Lecture Notes in Comp. Sci. 356 128-140.

 

 

12
Carrà-Ferro, G. and S.V. Duzhin. 1993. Differential-algebraic and differential-geometric approach to the study of involutive symbols. In Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics. Edited by N.H. Ibragimov, M. Torrisi and A. Valenti. 93-99. (Kluwer, Dordrecht).

 

 

13
Carrà Ferro, G. and W.Y. Sit. 1993. On Term-Orderings and Rankings, Lecture Notes in Pure and Applied Math., Computational Algebra, Dekker, 151.

 

 

14
Carminati, J. and R.G. McLenaghan. 1987. An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. -- Part II: Petrov type D space-times. Ann. Inst. Henri Poincaré. 47 (4) 337-354.

 

 

15
Cartan, É.J. 1904. Sur la structure des groupes infinis de transformations. Oeuvres Complètes Part II, Vol. 2, 571-714. (Gauthier-Villars, Paris).

 

 

16
Cartan, É.J. 1937. Les problèmes d'équivalence. Oeuvres Complètes Part II, Vol. 2, 1311-1334. (Gauthier-Villars, Paris).

 

 

17
Cartan, É.J. 1937. La structure des groupes infinis. Oeuvres Complètes Part II, Vol. 2, 1335-1384. (Gauthier-Villars, Paris).

 

 

18
Cartan E. 1946. Les Systèmes Différentiels Extérieur et leurs Applications Géometrique (Hermann, Paris).

 

 

19
Clarkson, P.A. and M.D. Kruskal. 1989. New similarity solutions of the Boussinesq equation, J. Math. Phys. 30 2201-2213.

 

 

20
Clarkson, P.A. and E.L. Mansfield. 1994. Algorithms for the Nonclassical Method of Symmetry Reductions, SIAM J. Appl. Math. 54: 1693-1719.

 

 

21
Clarkson, P.A. and E.L. Mansfield. 1994. On a shallow water wave equation, Nonlinearity. 7 975-1000.

 

 

22
Mansfield, E.L., G.J. Reid and P.A. Clarkson. 1998, Nonclassical Reductions of a 3+1-Cubic Nonlinear Schrödinger System, Computer Physics Communications 115, (in press). 44 single-spaced pages in LATEX. [Retrieve PostScript] .

 

 

23
Czichowski, G. and M. Thiede. 1992 Gröbner Bases, Standard Forms of Differential Equations and Symmetry Computation, Seminar Sophus Lie Darmstadt-Erlangen-Greifswald-Leipzig.

 

 

24
Ehresmann, C. 1950. Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés) 29-55, Bruxelles.

 

 

25
Gan $\check{\mbox{z}}$a, V.G., S.V. Mele $\check{\mbox{s}}$ko, F.A. Murzin, V.P. $\check{\mbox{S}}$apeev and N.N. Janenko. 1981. Realization on a computer of an algorithm for studying the consistency of systems of partial differential equations, Sov. Math. Dokl. 24(1) 638-640.

 

 

26
Gear, C.W. and L. Petzold. 1984. ODE methods for the solution of differential/algebraic systems, SIAM J. Numer. Anal. 21 716-728.

 

 

27
Gear, C.W. 1990. Differential algebraic equations, indices, and integral algebraic equations, SIAM J. Numer. Anal. 27 1527-1534.

 

 

28
Geddes, K. O., S. R. Czapor, and G. Labahn. 1992. Algorithms for computer algebra. (Kluwer Academic Publishers).

 

 

29
Gianni, P., B. Trager and G. Zacharias. 1989. Gröbner Bases and Primary Decomposition of Polynomial Ideals, In Computational Aspects of Commutative Algebra. Edited by L. Robbiano. 15-33. (Academic Press, New York).

 

 

30
Goldschmidt, H. 1967. Integrability Criteria for Systems of Partial Differential Equations, J. Diff. Geom. 1 269-307.

 

 

31
Gunning, R.C. and H. Rossi. 1965. Analytic Functions of Several Complex Variables. (Prentice-Hall, London).

 

 

32
Hairer, E., C. Lubich and M. Roche. 1989. The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Math. 1409 (Springer Verlag, New York).

 

 

33
Hartley, D. 1997. EDS: A REDUCE package for exterior differential systems Comp. Phys. Comm. 100: 177-194.

 

 

34
Hereman, W. 1994. Review of symbolic software for the computation of Lie symmetries of differential equations. Euromath Bull., 1 45-79.

 

 

35
Hickman, M. 1993. The Use of Maple in the Search for Symmetries, Research Report no. 77, Department of Mathematics (University of Canterbury, Christchurch, New Zealand).

 

 

36
Hudson, A. 1987. Symbolic Computation of Involutivity of PDES, Masters Thesis, University of Sydney.

 

 

37
Janet, M. 1920. Sur les systèmes d'équations aux dérivées partielles, J. de Math 3 65-151.

 

 

38
Kähler, E. 1934. Einführung in die Theorie der Systeme von Differentialgleichungen. (B. G. Teubner, Leipzig).

 

 

39
Kendig, K. 1977. Elementary Algebraic Geometry. (Springer-Verlag, New York).

 

 

40
Kolchin, E.R. 1950. Differential Algebra and Algebraic Groups. (Academic Press, New York).

 

 

41
Kovalevskaya, S. 1875. Zur Theorie der Partiellen Differentialgleichungen, J. Reine Agnew. Math. 80 1-32.

 

 

42
Kramer, D., H. Stephani, H. MacCallum, and E. Herlt. 1980. Exact solutions of Einstein's field equations, Deutscher Verl. d. Wiss. (Berlin).

 

 

43
Kuranishi, M. 1957. On E. Cartan's prolongation theorem of exterior differential systems, Amer. J. Math., 79 1-47.

 

 

44
Lisle, I.G. and G. J. Reid. 1998. Geometry and structure from infinitesimal defining equations, Journal of Symbolic Computation 26, 355-379. [Retrieve PostScript] .

 

 

45
Lisle, I.G., G.J. Reid and A. Boulton. 1995. Algorithmic determination of the structure of infinite symmetry groups of differential equations, in Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation (acm press, New York).

 

 

46
Lewy, H. 1957. An example of a smooth linear partial differential equation without solution, Ann. Math. 66 155-158.

 

 

47
Mansfield, E. 1991. Differential Gröbner Bases, Ph.D Thesis, University of Sydney.

 

 

48
Mansfield, E. 1996. A simple criterion for involutivity, J. London Math. Soc. 54: 323-345.

 

 

49
Mansfield, E.L. and E.D. Fackerell. 1993 Differential Gröbner Bases, Preprint 92-108 School of Mathematics, Physics, Computer Science, and Electronics (Macquarie University, Sydney, Australia, 1992).

 

 

50
Oaku, T. 1994. Algorithms for finding the structure of solutions of linear partial differential equations, In Proc. ISSAC '94.

 

 

51
Ollivier, F. 1991. Standard bases of differential ideals, Lecture Notes in Comp. Sci., 508 304-321.

 

 

52
Olver, P.J. 1993. Application of Lie Groups to Differential Equations. (Springer Verlag, New York). Second Edition.

 

 

53
Ovsiannikov, L.V. 1982. Group analysis of differential equations. (Academic Press, New York).

 

 

54
Pommaret, J. F. 1978. Systems of Partial Differential Equations and Lie Pseudogroups. (Gordon and Breach science publishers, Inc.)

 

 

55
Reid, G.J. 1990. In V. Hussin, Algorithmic Determination of Lie Symmetry Algebras of Differential Equations, Lie Theory, Differential Equations and Representation Theory, Proc. Annual Seminar of the Canadian Math. Soc. (Les Publications de Centre de Recherches Mathématiques, Montréal, Canada) 363.

 

 

56
Reid, G.J. 1990, A triangularization algorithm which determines the Lie symmetry algebra of any system of PDEs, J. Phys. A: Math. Gen. 23, 853-859.

 

 

57
Reid, G.J. 1991. Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution, Euro. J. Appl. Math. 2 293-318.

 

 

58
Reid, G.J. 1991. Finding abstract Lie symmetry algebras of differential equations without integrating determining equations, Euro. J. Appl. Math. 2 319-340.

 

 

59
G. J. Reid and A. Boulton (1991), Reduction of systems of differential equations to standard form and their integration using directed graphs, in Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, edited by S. M. Watt, 308-312 (acm press, Bonn).

 

 

60
Reid, G.J., A. D. Wittkopf and P. Lin. 1996. Diffential-elimination completion algorithms for DAE and PDAE. Revised for Stud. in Appl. Math.

 

 

61
Reid, G.J., I.G. Lisle, A. Boulton. Characterising Lie Equations by their Infinitesimal Symmetries, preprint.

 

 

62
Reid, G.J., I.G. Lisle, A. Boulton and A. D. Wittkopf. 1992. Algorithmic determination of commutation relations for Lie symmetry algebras of PDEs, in: Proc. ISSAC '92, Berkeley, California, Ed.: P.S. Wang (ACM Press, New York, 1992) 63-68.

 

 

63
Reid, G.J., and D.K. McKinnon. 1993. Solving systems of linear PDEs in their coefficient field by recursively decoupling and solving ODEs, Preprint, Department of Mathematics, (University of British Columbia, Vancouver, Canada).

 

 

64
Reid, G.J., A. D. Wittkopf and A. Boulton. 1994. Reduction of systems of nonlinear partial differential equations to simplified involutive forms. IAM Tech. Report 14. Univ. of Brit. Col. [Retrieve PostScript] .

 

 

65
Reid, G.J., A. D. Wittkopf and A. Boulton. 1996. Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. of Appl. Math. 7 635-637.

 

 

66
Reid, G.J., D.T. Weih and A.D. Wittkopf. 1993. A Point symmetry group of a differential equation which cannot be found using infinitesimal methods. In Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics. Edited by N.H. Ibragimov, M. Torrisi and A. Valenti. 93-99. (Kluwer, Dordrecht).

 

 

67
Reid, G.J. and A. D. Wittkopf. 1993. The long guide to the Standard Form package. Programs and documentation available by anonymous ftp. [Anonymous ftp-address] .

 

 

68
Rabier, P.J. and W.C. Rheinboldt. 1994. A geometric treatment of implicit differential-algebraic equations, Journal of Differential Equations, 109 110-146.

 

 

69
Riquier, C. 1910. Les Systèmes d'Équations aux Dérivées Partielles. (Gauthier-Villars, Paris).

 

 

70
Ritt, J.F. 1950. Differential Algebra, Amer. Math. Soc. Colloq. Publns. 13 (A.M.S., New York).

 

 

71
Rosenfeld, A. 1959. Specialisations in differential algebra. Trans. Amer. Math. Soc. 90, 394-407.

 

 

72
Rust, C. 1993. On The Classification of Rankings of Partial Derivatives, Preprint.

 

 

73
Rust, C. and G.J. Reid. 1997. Rankings of Partial Derivatives, in Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, 9-16 (acm press, New York).

 

 

74
Rust, C. 1998. Rankings of Derivatives for Elimination Algorithms and Formal Solvability of Analytic Partial Differential Equations, Ph.D Thesis (Univ. of Chicago). [Retrieve PostScript] [Retrieve DVI] .

 

 

75
Schü, J., W.M. Seiler, and J. Calmet. 1992. Algorithmic Methods for Lie Pseudogroups, In Modern Group Analysis: advanced analytical and computational methods in mathematical physics. Ibragimov, N., Torrisi, M. and Valenti, A. eds. Kluwer, Dordrecht.

 

 

76
Schwarz, F. 1984. The Riquier-Janet theory and its application to nonlinear evolution equations, Physica D11 243-251.

 

 

77
Schwarz, F. 1985. Automatically determining symmetries of differential equations, Computing. 34 91-106.

 

 

78
Schwarz, F. 1992. An Algorithm for Determining the Size of Symmetry Groups, Computing 49 95-115.

 

 

79
Schwarz, F. 1992. Reduction and completion algorithms for Partial Differential Equations, In Proc. ISSAC '92. 49-56. (ACM Press, Berkeley).

 

 

80
Seidenberg, A. 1956. An elimination theory for differential algebra, University of California Publ. in Math. New Series 3/2, 31-66.

 

 

81
Seiler, W.M. 1994. Analysis and application of the formal theory of partial differential equations, Ph.D. thesis, Lancaster University.

 

 

82
Sherring, J. and G. Prince. 1992. DIMSYM - Symmetry Determination and Linear Differential Equations Package, Preprint, Department of Mathematics (LaTrobe University, Bundoora, Australia).

 

 

83
Seiler, W. M., P. J. Vasiliou and C. Rogers. Formal Analysis of the general Cauchy problem for the system: $u_t=u_{xx}$, $u_y=u_{xx}$, Preprint.

 

 

84
Singer, I.M. and Sternberg, S. 1965. The infinite groups of Lie and Cartan. I. The transitive groups, J. d'Analyse Math., 15 1-115.

 

 

85
Spencer, D. 1969. Overdetermined Systems of Linear Differential Equations, Bull. A.M.S. 75 179-239.

 

 

86
Šurygin, V.A. and N.N. Janenko. 1961. On the realization on electronic computing machines of algebraico-differential algorithms, Problemy Kibernetika 6 33-43 (in Russian).

 

 

87
Thomas, J.M. 1929. Riquier's existence theorems, Annals of Math. 30 285-310.

 

 

88
Thomas, J. M. 1931. Riquier's Existence Theorems, Annals of Math. 35, 306-311.

 

 

89
Topunov, L. 1989. Reducing systems of linear differential equations to a passive form, Acta Appl. Math. 16 191-206.

 

 

90
Tresse, A. 1894. Sur les invariants différentiels des groupes continus de transformations, Acta Mathematica 18 1-88. (English translation I. Lisle 1989, available from the author).

 

 

91
Vessiot, E. 1924. Sur une théorie nouvelle des problèmes généraux d'integration, Bull. Soc. Math. Fr. 52 336-395.

 

 

92
Weispfenning, V. 1993. Differential-Term Orders, In Proc. of ISAAC '93, (Kiev, ACM press).

 

 

93
Wolf, T. 1987. A package for the analytic investigation and exact solutions of differential equations, in: Proc. EUROCAL '87, Leipzig, GDR, Ed.: J.H. Davenport, Lecture Notes in Computer Science 378 (Springer Verlag, Berlin, 1989) 479-491.

 


Greg Reid 2003-11-24