Elena Smirnova, Stephen Watt and ORCCA Ink. present Maple as a Computer Algebra System and Pen as an Input Device

> \* \* \* starring in

# Pen-based Rearrangement of 2D Math Expressions in Maple

(preview)

*Epigraph: ... Breaking rules can serve for the purpose of good as well as ... research.*  Final goal is to be able to handle with sufficient ease two-dimensional mathematical expressions from a pen-based input.

Scene A

For example having an equation like

$$A + F(x) - \sin(x^2) = B$$

one may drag one term to the other side of the equation sign, so it should appear on the other side with an opposite sign:

$$F(x) - \sin(x^2) = B - A$$

#### Scene B

or having a formula like

$$\frac{x(e^{2x}-\sin^4 x)^3}{e^x+\sin^2 x}$$

one may want to simplify it by circling the power to the second term in the numerator and crossing the whole denominator:

$$\frac{x(e^{2x} - \sin^4 x)^3}{e^x + \sin^2 x}$$

so the resulting formula will look like

$$x(e^{2x} - \sin^4 x)^2(e^x - \sin^2 x)$$

## Plot

To achieve this goal we have to provide **software tools for 2D math expression rearrangement.** These tools can to be integrated into a pen-based math system.

## Main Characters

- Interface to capture math input, show math output and handle pen gestures on displayed math.
- *A Math handwriting recognition engine* to recognize math input and build math expression from it.
- Math backengine to perform necessary background computation involved in expression rearrangement

## Scenario



## Intrigue

Problem:

Math handwriting recognition tools are currently under development, but we need to have a source of <u>meaningful</u> math editing problems to serve as a realistic base expressions to be rearranged.

Solution:

Use math that has been already parsed and rendered in math environment.

An experiment:

As a base for math expression rearrangement we use 2D output from a Maple computation (which appears in blue color on Maple worksheet)

# Prologue

To be able rearrange math expression we need the information about its math content as well as its math presentation. It is especially important for ambiguous cases: e.g.  $x^2$  (power vs. upper index), and fx (f(x) vs. fx vs. name fx)

Every output math expression in Maple has two tree structures associated with it:

- *Maple math model* stores presentation information about math. It serves to render math in GUI, and is based on the W3 consortium MathML standard.
- DAG (direct acyclic graph) encodes math content.

For example an expression  $sin(x^2) - 1 = y$  appears as



## Script

Once the user has selected a subexpression in Maple output, s/he then can choose to perform one of the following actions:

• get an "operand" path to the selected subexpression in root formula:

ex:  $sin(x^2 - y^2) - sin(x^2) cos(y^2) \rightarrow op([1,1,2,2,2],%)$ 

• replace the selection<sup>\*</sup>

ex: 
$$sin(x^2 - y^2) - sin(x^2) cos(y^2)$$

\*In this case the track of changes to Maple output will be noted to the Maple input: it will be changed to

• Apply *value preserving transformations* to the selected subexpression

I.e. *expand / factorize / simplify* the selection and replace it with the result of a chosen operation \*\*



Clicking on the highlighted operation will produce a new expression in Maple output

$$\sin((x-y)(x+y)) - \sin(x^2)\cos(y^2)$$

\*\* and also add new directive to corresponding Maple input if it exists:

Dragging the selection in other side of the equation/inequality in case of sum as main operator:

>Int( $sin(x^2), x$ )-x=int( $sin(x^2), x$ )+x^2;

$$\int \sin(x^2) dx - x = \frac{1}{2} \sqrt{2\pi} \text{ FresnelS}\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + x^2$$

will produce

>Int(sin(x^2),x)-x=int(sin(x^2),x)+x^2: lhs(%)-op(1,rhs(%)=rhs(%)-op(2,lhs(%));

$$\int \sin(x^2) dx - \frac{1}{2}\sqrt{2\pi} \text{ FresnelS}\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) = x^2 - x$$

• Dragging the selection in other side of the equation in case of product as main operator

$$\frac{LambertW(z)}{z} = e^{-x}$$

will give

> LambertW(z)/z=exp(-x):
numer(lhs(%)) = rhs(%)\*denom(lhs(%));

 $LambertW(z) = e^{-x}z$ 

### Action!



## Behind the Stage

To integrate tools for math expression rearranging with Maple we needed to

- create three Java packages for adding new controllers, components and event handlers to the Maple worksheet GUI.
- provide entry points in existing Maple GUI to plug and activate new tools *without performing major changes to the original Maple Iguana code*
- develop a middleware to generate Maple instructions generated from pen gestures and menu calls to be executed in Maple kernel.
- hook-up Maple kernel and a new GUI tools created.

#### In next series...

Further work in this direction:

- Allow Maple worksheet to capture ink strokes from Pen input device to determinate selections in math expression (responsible: Elena Smirnova)
- Be able to parse and disambiguate 2D math input (Maplesoft Inc. and Co.)
- Develop real math handwriting recognition tools (ORCCA Pen-Math project and al.)

To be continued...