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Abstract. Many processes in mathematical computing try to use knowl-
edge of the most desired forms of mathematical expressions. This occurs,
for example, in symbolic computation systems, when expressions are sim-
plified, or mathematical document recognition, when formula layout is
analyzed. The decision about which forms are the most desired, however,
has typically been left to the guess-work or prejudices of a small number
of system designers.

This paper observes that, on a domain by domain basis, certain ex-
pressions are actually used much more frequently than others. On the
hypothesis that actual usage is the best measure of desirability, this pa-
pers begins to quantify empirically the use of common expressions in the
mathematical literature. We analyze all 20,000 mathematical documents
from the mathematical arXiv server from 2000-2004, the period corre-
sponding to the new mathematical subject classification. We report on
the process by which these documents are analyzed, through conversion
to MathML, and present first empirical results on the most common
aspects of mathematical expressions by subject classification. We use
the notion of a weighted dictionary to record the relative frequency of
subexpressions, and explore how this information may be used for fur-
ther processes, including deriving common patterns of expressions and
probability measures for symbol sequences.

1 Introduction

Most software that deals with symbolic mathematical information have some
pre-defined notion of when expressions are well-formed and, of the well-formed
expressions, which are the most desirable. Which forms are deemed most desir-
able is usually decided by the software system designers, though their experience
or preference, and hard-coded into the application’s logic. This has made sym-
bolic mathematical software more natural to use in some areas than others,
depending on the compatibility of the system designer’s choices with the user’s
needs. As we move toward more sophisticated, knowledge-based mathematical
software, this methodology becomes increasingly problematic. In this paper we
argue that it is important to understand what forms of expressions are deemed



most desirable in the actual practice of mathematics. We believe that empirical
knowledge of which forms of expressions are used most often will lead to more
effective mathematical software. For example, this information could be used to
guide simplification in computer algebra systems, or to provide disambiguation
criteria in mathematical document recognition.

Our initial motivation for this work comes from the area of mathematical
handwriting recognition. We note that today’s acceptable recognition rates for
natural language handwriting is achieved with the aid of dictionary-based meth-
ods. For example, if the feature analysis of a stroke could yield either Hdb or
Hello, then Hello is chosen because it is in the dictionary. At first considera-
tion, such an approach is not suitable for mathematical handwriting recognition
for several reasons: Mathematical expressions are trees, not strings. There is no
fixed vocabulary from which to build a dictionary. The set of symbols alone is
insufficient, and the set of possible expressions is infinite.

Nevertheless, any mathematically sophisticated person can take an arbitrary
volume from a mathematical library, leaf through the pages, and, in a few sec-
onds, have a very good idea of the precise mathematical subject area, in part,
simply be noticing some characteristics of the formulae. We therefore claim that
there is, in fact, usage knowledge that can and should be used by mathemat-
ical software packages. In the mathematical handwriting recognition case, this
knowledge could be used to disambiguate between sinwt and sinwt, since the
former occurs much more often in practice. In the computer algebra case, this
knowledge could be used to order one polynomial as 22+ 1 and another as 1+ €2,

The goals of this present line of work are to understand how

— to capture and represent empirical mathematical usage information

— to employ this information in mathematical software packages

— to analyze and organize this knowledge so as to be most useful.
We report here on our initial results towards these long-term goals. As stated
earlier, we see immediate applicability to mathematical handwriting recognition
and to symbolic mathematical computing. Other potential applications include
mathematical searching, automated classification of mathematical documents,
and mathematical data mining.

The contributions of this work are

— the identification of empirical mathematical usage as an important source of
information for mathematical software design

— an approach to empirical analysis of mathematical expressions

— specific findings on symbol usage, on a subject-by-subject basis

— specific findings on most common expression usage

— methods to derive pattern expressions, and symbol-sequence Markov chains,
based on analysis of instances.

The rest of the paper is organized as follows: We present the methodology
of the current study in Section 2. As part of this study, we rely on a TpX to
MathML conversion. Section 3 describes this process and extensions we have
had to make for the present work. Results on frequency of symbols, as identifiers
and operators, are reported in Sections 4 and 5. We present some initial results
on expression analysis in Section 6. Section 7 concludes the paper.



[ #] Subject Classification | #| Subject Classification |
19|00 General 34|45 Integral equations
39|01 History and biography 1066|46 Functional analysis
228|03 Math. logic and foundations 543147 Operator theory
1212{05 Combinatorics 16449 Calculus of var.; optimization
164|06 Order, lattices, ordered alg. struct.| 171|51 Geometry
48|08 General algebraic systems 435152 Convex and discrete geometry
1383[11 Number theory 1717|53 Differential geometry
108{12 Field theory and polynomials 226|54 General topology
66713 Commutative rings and algebras | 62755 Algebraic topology
2445|114 Algebraic geometry 1618|57 Manifolds and cell complexes
240(15 Lin. and multilin. alg.; matrix thy | 920[58 Global analysis, an. on manifolds
A6 Aq e and_al hy (9] 60 Prob_th ned ot e

s 1atix o ey o O
86116 Associativeringsand-algebras 87H60-Prob—theoryandstoch—proeesses
760|17 Nonassociative rings and algebras | 105|162 Statistics
404|18 Category theory; hom. algebra 209|65 Numerical analysis

239|119 K-theory 237|168 Computer science
1169|120 Group theory and generalizations | 113|70 Mechanics of particles and systems

472122 Topological groups, Lie groups 34174 Mechanics of deformable solids

18526 Real functions 69|76 Fluid mechanics

123[28 Measure and integration 13|78 Oplics, electromagnetic theory

308|30 Functions of a complex variable 6|80 Classical thermodyn., heat xfer
59|31 Potential theory 553|81 Quantum theory

797(32 Several complex var. & an. spaces | 260(82 Stat. mechanics, struct. of matter

312|33 Special functions 48|83 Relativity and gravitational theory

295|134 Ordinary differential equations 6|85 Astronomy and astrophysics

746|35 Partial differential equations 15|86 Geophysics

706(37 Dyn. systems and ergodic theory 96|90 Operations research, math. prog.
52|39 Difference and functional eqns 42|91 Game thy, econ., soc. & behav. sci.
21(40 Sequences, series, summability 35|92 Biology and other natural sciences
88(41 Approximations and expansions 115|93 Systems theory; control

290(42 Fourier analysis 128(94 Info. and comm., circuits

143(43 Abstract harmonic analysis 12|97 Mathematics education

43|44 Integral transforms, op. calculus

Fig. 1. Count of articles by MR Subject Classification

2 Methodology

To study the empirical usage of mathematical expressions, the first step was
to identily a suitable source of mathemaltical inpul. A number of possibilities
existed, including

— to use logged input from a software system, such as Maple,
— to use a collection of documents from a set of cooperative authors,
— to use the articles from a particular journal

Although any ol these avenues would have been easy Lo follow, each had its own
problems: Logged input from a software system would heavily influenced by the
characteristics of the system, and thus be riddled with artefacts. Articles from a
small set of authors, or from a particular journal, would likely be heavily slanted
in their usage and could not be taken as representative.



Instead, we chose to use the collection of articles available on the widely
used, public e-Print server, arXiv.org [2], as our corpus of mathematical usage.
This has the advantage of broad coverage by mathematical area. It also has the
disadvantages that:

— Some areas are disproportionately represented.

— The mathematical material is at a research level, and this may not be rep-
resentative of usage at more elementary levels.

— The material is relatively new, and is not representative of historical usage.

Bearing this in mind, we decided that the collection of articles was sufficiently
representative of current mathematical usage to be useful, and that developing
a collection that was more balanced by area, level, historical period, etc, was a
long-term project.

One of the attractive properties of arXiv.org is its organization of articles
according to the Mathematics Subject Classification, which is used to categorize
items covered by the two reviewing databases, Mathematical Reviews (MR) and
Zentralblatt MATH (Zbl). The current classification system, MSC 2000 [3], is
a revision of the classification scheme that had been used previously by these
databases. It consists of more than 5,000 two-, three-, and five-character classfi-
cations, corresponding to increasingly finely defined disciplines of mathematics.
For example, “11” represents Number theory; “11B” Sequences and sets, and
“11B05” Density, gaps, topology.

We followed the following steps to obtain our corpus of expressions to analyze:

The first step was to obtain all articles from arXiv.org from the five year period
2000-2004. This data range contained all articles since the new subject classifi-
cation was introduced. To understand area-specific usage patterns, while having
a sufficient number of articles in each category, we grouped articles according to
their top-level, two-digit MSC classification. The count by classification of arti-
cles considered is shown in Figure 1. Altogether 22,289 articles were accessed.
Of these 21,677 came with TEX source. This comprised 4.65GB of PDF files and
794 MB of TgX source.

The second step was to extract mathematical expressions from the articles. It
was helpful that the articles had TEX source, but this was not usable directly
for our analysis. The problems with TRX source include:

— Mathematical expressions typically use author-defined macros.

— Mathematical expressions my be hidden in macros, and not be visible in the
source text.

— TEX expressions typically have only as much structure as is needed to give
proper visual grouping. For example $(ad-bc) “2$ consists of a single row
of 7 items, (, a, d, -, b, ¢ and ) ~2. Note that there is no notion that ad and
bc are subexpressions, while d — b is not, and note that it is only the closing
parenthesis that is squared.



We used our TEX to MathML [1] converter, described in [8], to resolve these
difficulties, and performed our analysis on the resulting MathML expressions.
The benefit of this approach was that the expressions treated were (for the most
part) complete, well formed, and grouped appropriately. The difficulty with the
approach was that not all the complexities of TEX were handled, and some
expressions were incorrectly translated. However, since we are interested in the
most frequently occurring expressions, the incomplete handling of infrequently
occurring expressions is not, in principle, a problem. We describe the conversion
process in more detail in Section 3. The overall conversion process required about
three days of computer time on a personal workstation.

The third step was to examine the MathML expressions for each area, and
to build three frequency tables. The first two tables contained counts of all
identifier symbols (typically single letter operands) and all operator symbols.
The third table counted the number of occurrences in the classification of each
sub-expression. These tables were built using syntactic comparison of XML ele-
ments. For example, <mrow><mo> (</mo><mi>a</mi><mo>)</mo></mrow> would
be treated as inequivalent to <mfenced><mi>a</mi></mfenced>. We therefore
preprocessed the MathML to remove multiple representations for what would
appear as syntactically equivalent mathematical expressions. This consisted of a
number of simple conversions, including

— for <mi> and <mo>, normalizing the use of the mathvariant attribute
for <mfrac>, eliminating any non-zero linethickness attribute

for <mfenced>, convert to <mrow> with explicit open and close operators
for <mmultiscripts>, convert to <msub> and <msup>

elimination of a number of attributes and elements

3 TEX to MathML Conversion

The conversion of TEX to MathML is not a straightforward process. There is
not yet a standard tool that completely solves this problem. TEX documents
are, in general, programs with the computational power of a Turing machine. In
practice, TEX macros are usually used to perform simple substitutions, with a
smaller number performing heavy computations and transformations.

There are two principal approaches to TEX to MathML conversion: The first
approach is to use alternative style files with modified definitions for the stan-
dard mathematical macros. These modified macros leave special markers in the
generated dvi file, which are then used to generate the MathML. This approach
has the advantage that all TEX files can be handled. The disadvantage is that
all the high-level structure implicit in the TRX markup is discarded. This is the
approach taken by the Hermes project [4].

The second approach is have a (partial) implementation of a TEX processor
handle the input, and to generate MathML from the higher-level TEX operators.
This has the advantage that implicit semantics in TEX markup (e.g. grouping
information from braces,“{” and “}”} is available to the MathML generation.



The disadvantage is that, in principle, a complete TEX re-implementation is
needed.

For this study, we used a TRX to MathML converter, developed within the
ORCCA research group. This converter adopts the second approach. It has a
partial implementation of the TEX programming language sufficient to expand
the macros of interest in mathematics. Source for a TEX document may be given
as a single file, or as a tree of files and using external macro packages. The
correspondences between TEX and MathML are given by a set of bi-directional
mapping files. These mapping files are intended to allow high-level semantic map-
pings between TEX and XSLT style sheets [8]. Because complex TEX macros are
almost always given in style files, rather than being specified at top-level by
authors, the mapping files may almost always be used to eliminate any short-
comings arising from the incomplete implementation of TEX. This translator is
available on-line [5].

The conversion of all TEX source documents in the five year arXiv.org col-
lection served as heavy test for the MathML converter, and a number of problems
were encountered. Initially only 14,354 of the 21,677 articles could be handled
automatically. First, we discovered that there were a number of TEX constructs
that were not handled by the converter. The most important of these were (1)
the handling of explicit positioning commands, e.g. for kerning symbols, and
(2) the ability to handle arbitrary external macro packages from a search path.
Dealing with these difficulties proved to be fairly easy.

The second major difficulty in the TgX to MathML translation was that
a significant number of the TEX source files did not contain valid TgX. The
TRX converter had been constructed assuming valid input, the idea being that
an author would first produce a correct file by debugging with TEX and then,
possibly long afterward, generate MathML. This assumption proved invalid —
authors do not always correct their TEX errors if TEX’s error recovery gives
a desired output. We therefore were required to extend the TEX to MathML
converter to simulate TRX error handling.

With user error handling in place, we were able to process 19,137 of the
articles automatically. Of these, 19,063 were able to have their MathML canoni-
calized, and it is from these that we have extracted the expressions for analysis.

4 Identifiers

Our first analysis determines the most frequently occurring symbols used as
identifiers in mathematical expressions. By this we mean symbols that occur as
operands or function names, rather than as operators.

We counted all symbols occurring in expressions and recorded the results both
for the global analysis and independently for each category. The first observation
is that in each classification some symbols occur much more frequently than
others, and which symbols are the most frequent differs from classification to
classification.



All 03 11 35
Ucodel|ld.|Freq.| [Ucode|ld.[Freq.| |Ucode|ld.]Freq.| [Ucode[ld.[Freq.
006E | n 23,419 0069 | 2 |26,055 006E | n |27,743 0078 | = 24,096
0069 | 7 21,065 006E | n 124,372 0070 | p |19,216 0074 | t 23,206
0078 | =z |17,671 0078 | = 20,740 006B | k |18,228 0075 | u 18,543
006B | k |15,602 0058 | X |17,111 0078 | = |16,828 006E | n (16,618
0074 | t |12,639 0041 | A 15,080 0069 | ¢ |16,735 006B | k |13,927
0058 | X |11,348 0070 | p (13,285 0061 | a (12,064 0069 | 7 |13,469
006A | 5 11,213 03B1 | o |12,432 006D |m (11,272 0073 | s |11,744
0070 | p |11,110 006B | k |12,316 0064 | d 110,634 006A | j 11,620
0041 | A [11,058 0066 | f (11,455 0071 | g |10,393 0064 | d (11,214
0061 | a 10,425 0061 | @ |11,133 0073 | s |10,164 004C | L | 9,818
0064 | d [9,470 0047 | G 11,108 006A | j 10,086 03B5 | ¢ | 9,653
006D | m | 9,363 006D | m (10,054 0072 | r 19,391 03BB | A | 9,396
0066 | f | 8,863 006A | j | 9,125 0074 | t 19,371 0070 | p | 8,892
004D | M| 8,819 03C9 | w | 9,102 0047 | G |9,355 0043 | C | 8,121
0073 | s | 8,583 004D | M | 8,719 0058 | X |9,314 03Bl | « | 7,952
0072 | r | 8,393 0053 | S | 8,651 0041 | A[9,110 0072 | r | 7,835
0043 | C | 8,230 0043 | C' | 8,643 004B | K [9,014 0076 | v | 7,827
0053 | .S [8,019 0046 | F' | 8,474 0066 | f | 8,643 0061 | a |7,414

Fig. 2. The most frequent identifiers (per million) in all classifications (All), Logic (03),
Number Theory (11) and Partial Differential Equations (35).

| 03 | | 11 | 35

[Ucode[ld.[Freq.] [Ucode[ld.[Freq.] UcodellId.[Freq.
03BT [ o [12,432 006D [m 11,272 0075 | u |18,543
0066 | f |11,455 0064 | d 10,634 0073 | s |11,744
0047 | G |11,108 0071 | q |10,393 0064 | d |11,214
006D | m 10,054 0073 | s |10,164 004C | L | 9,818
03C9 | w |9,102 0072 | r | 9,391 03B5 | € | 9,653
004D | M| 8,719 0047 | G | 9,355 03BB | A | 9,396
0053 | S | 8,651 004B | K |9,014 0043 | C'| 8,121
0043 | C | 8,643 0066 | f |8,643 03B1 | o | 7,952
0046 | F | 8,474 0046 | F | 7,879 0072 | r | 7,835
0079 | y | 8,470 004C | L | 7,591 0076 | v | 7,827
0054 | T | 7,885 004E | N | 7,408 0079 | y | 7,409
0062 | b | 7,716 0053 | S | 7,262 0066 | f | 7,082
004B | K | 7,652 0076 | v | 6,856 03BE | £ | 7,053
0042 | B | 7,581 0054 | T |6,735 007A | 2 | 6,729
0063 | ¢ | 7,370 0067 | g | 6,523 0054 | T |6,671
0050 | P |7,367 0050 | P |6,427 004E | N | 6,472
0073 | s | 7,176 007A | z | 6,357 006D | m | 6,377

Fig. 3. Most frequent operators (per million) in Logic (03), Number Theory (11) and
Partial Differential Equations (35), excluding the 10 most frequent from all categories.
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Fig. 4. Most frequent identifiers in all expressions (upper left), Logic (upper right),
Number Theory (lower left), and Partial Differential Equations (lower right).
The horizontal axis gives the symbol (from most to least frequent), and the vertical
axis gives the number of occurrences per million symbols in the classification.

Figure 2 shows the most frequently occurring identifiers for all the classifica-
tions taken together, as well as the most frequently occurring identifiers for three
typical classifications, Logic, Number Theory and Partial Differential Equations.
For detailed information on all classifications see [7].

This information could be used for disambiguation in mathematical hand-
writing recognition. In Number Theory, for example, we see that the letter n
occurs more than twice as frequently as the letter r. By feature analysis alone,
these two letters are difficult to distinguish. This frequency information is there-
fore useful in disambiguation.

We have arrived at a generalization of the dictionary used for disambigua-
tion in handwriting recognition: we have constructed here, with symbols (and,



in Section 6, with expressions) a weighted dictionary. This structure carries in-
formation about the vocabulary of potential results, together with empirically
determined weights.

Figure 3 shows the most frequently occurring identifiers for the same clas-
sifications after excluding the 10 identifiers that appear most frequently in all
classifications together. We see these lists are less similar than those of Figure 2.
We might use this information to aid in automatic document classification, to-
gether with word-frequency and citation analysis. Information such as this could
also be used by an interactive system as a heuristic aid to determine the math-
ematical area in which a user is working.

Figure 4 shows, for the same classifications, the number of occurrences of
identifier symbols, with the symbols ordered from most frequent to least frequent.
While this will obviously be a monotonically decreasing curve, it is remarkable
the degree of similarity in the shapes of these curves. So, we observe that although
which symbols are used most varies quite a bit from mathematical area to area,
the distribution of use of symbols is remarkably similar.

Although, lor space reasons, we have presented here the tabular resulls and
graphs for only three classifications, and for the aggregate, the overall picture is
similar for the other classifications.

All 03 11 35

Ucode[Op.[Freq.| [Ucode[Op.[Freq.| [Ucode[Op.[Freq.| [Ucode|Op.|[Freq.
0029 } 83,542 0029 } [74,308] | 002C | ) [28,836 0029 ) [83,792
0028 ( 183,397| | 0028 ( |74,246| | O06E | ( |27,743 0028 ( 183,478
003D | = |34,773| | 003D | = |31,706 0070 | = (19,216] | 002D | — |37,843
002D | — (31,376 2061 30,003| | 006B | — (18,228 2061 28,266
2061 27,861 2208 | = (20,048 0078 | = |16,828] | 003D | = (28,225
002B | + |21,458]| | 002D | — (15,808 0069 | + 16,735 | 002B | + (26,642
2208 | > [11,873] | 002B | + |15,649 0061 | (12,064 2223 | (25,628
2223 | 110,942| | 005B [ 112,135 | 006D | / |11,272 2225 || [16,608
002A | * | 7,884 005D | ] |11,981 0064 | > (10,634 2208 | > (10,476
005B [ |7,774 2223 | 19,459 0071 [ (10,393 2264 | < 19,440
005D | ] | 7,619 002A | = | 8,536 0073 ] 110,164 2202 | 9 | 7,867
2192 | — 6,427 007B | { | 7,649 006A | > |10,086| | 002F | / | 7,096
002F | / |6,328 007D | } | 7,453 0072 | < (9,391 221E | o0 | 6,405
2264 | < | 5,436 003C | < | 7,378 0074 | — | 9,371 2228 f 6,333
007B | { |4,839 02C9 | ~— |6,717 0047 | = | 9,355 005B [ [5,770
007D | } | 4,604 || 2192 | — |6,343| | 0058 | { |9,314| | 005D | | |5.470
02DC [ ~ [4,559 2264 | < |6,310 0041 1 19,110 02DC | ~ |5,336
2225 | || 13,931 002F | / |3,807 004B | ~ [9,014 003C | < (4,492
2297 | Q | 3,840 2026 | ... | 3,512 0066 | oo | 8,643 2207 | V [4,201
2211 | 5~ | 3,669 222A | U | 3,293 0046 | > [ 7,879 003E | > [4,165

Fig. 5. The most frequent operators (per million) in all classifications (All), Logic (03),
Number Theory (11) and Partial Differential Equations (35).
The Unicode point 2061 is the invisible “ApplyFunction” operator.
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| 03 | | 11 | 35

[Ucode|Op.|Freq.| [Ucode|Op.|Freq.| Ucode|Op.[Freq.
007B | { 7,649 002F | / [11,056 2225 | I [16,608
007D | } |[7,453 2211 | Y | 5,539 2264 | < |9,440
003C | < |7,378 2264 | < |5,377 2202 | 8 | 7,867
02C9 | ~ |6,717 007B | { |4,423 002F | / |7,096
2264 | < [6,310 007D | } |4,134 221E | oo | 6,405
002F | / |3,807 00AF | ~ [4,040 222B | [ |6,333
2026 | ...|3,512 221E | oo | 4,018 02DC | ~ | 5,336
222A | U |3,293 003E | > |3,551 003C | < |4,492
2229 | N |3,249 20EF | --- | 3,394 2207 | V | 4,201
2286 | > |3,209 02DC | ~ | 3,353 003E | > |4,165
003E | ( |3,067 2265 | > | 3,286 007B | { |3,542
2329 | ) 2,830 2113 | ¢ {3,021 22C5 | . |3,459
232A | ---|2,758 003C | < |2,788 2211 | 37 |3,384
22EF | - |2,546 00D7 | x |2,786 007D | '} |3,155
02DC | ~ |2,454 2297 | ® | 2,434 2265 | > | 3,148
00D7 | x |2,426 02C9 | - |2,403 00AF | ~— |2,653
2218 | ~ |2,315 2026 | ...|2,150 02C9 | ~ |2,552
00AF | > |2,190 22C5 | . |2,122 02C6 | " |2,230

Fig. 6. Most frequent operators (per million) in Logic (03), Number Theory (11) and
Partial Differential Equations (35), excluding the 12 most frequent from all categories.

5 Operators

An analogous analysis to that for identifiers was performed for operator symbols.
Figure 5 shows the most frequently occurring operators for the same classifi-
cations as before and Figure 6 shows the most frequently occurring operators,
excluding the 12 most common ones from all classifications taken together. Fig-
ure 7 shows the count of operator symbols, sorted from most to least popular.

We note that, again, the shape of the operator symbol distribution is similar
among categories, even though it is different operators that are occurring most
frequently. This shape is also quite different from the distribution for identifiers:
generally, a few operators are used very frequently.

6 Expressions

We have performed a similar analysis for non-trivial subexpressions, counting the
number of times each distinct subexpression occurs in each subject classification.
The analysis of the results is more complex, however.

An large subexpression occurs a certain proportion of the time is more signil-
icant than an smaller subexpression that occurs with the same frequency, for two
reasons. The first reason is that, in absolute terms, there are fewer subexpres-
sions of the large size occurring. The second reason is that there are exponentially
more different potential expressions of the larger size.
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Fig. 7. Most frequent operators in all expressions (upper left), Logic (upper right),
Number Theory (lower left), and Partial Differential Equations (lower right).
The horizontal axis gives the symbol (from most to least frequent), and the vertical
axis gives the number of occurrences per million symbols in the classification.

With the idea that the size of an expression should be part of determining
the significance of its occurrences, we have analyzed each subject classification
for the number of expressions, and number of distinct expressions, according to
expression size. The results for subject classifications 03, 11 and 35 are shown
in Figure 8.

We observe two phenomena: First, as expected, the number of expressions oc-
curring decreases as size increases. There are many more small expressions than
large expressions. Secondly, we note that the number of distinct expressions de-
creases more slowly, by size, than the number of expressions. For example, in the
classification 35, Partial Differential Equations, there are about 30 expressions
of size 2 occurring for each distinct subexpression of size 2. This ratio decreases
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| 0 L T | % |
[Sz] # |distinct] [Sz] # [ distinct| [Sz] # |distinct]
all|50,933,843| 138,136 all|14,293,554]1,362,135 all|9,613,172| 802,767
2| 5,151,583 13,439 21 1,396,996 65,326 21 924,821 30,670
31 3,113,613] 14,183 3 887,089 110,311 3| 614,469 53,193
41 1,703,762 14,276 4 483,089 124,503 41 325,538] 59,519
51 1,294,706 13,631 5 375,023| 130,808 5 238,749| 63,393
6 759,075] 10,035 6 220,984 107,670 6| 149,664 55,030
7 692,797 9,966 7 201,022| 107,281 71 127,204| 54,382
8 422,608 7,094 8 124,985 78,119 8 86,149 42,599
9 372,049 6,424 9 108,603 71,658 9 72,703 38,763
10 248,146 4,635 10 73,020 51,854 10 50,973 30,237
11 235,781 4,515 11 68,509 49,873 11 44 671 27,931
12 166,687 3,259 12 49,342 37,912 12 33,966| 22,665
13 163,029 3,211 13 46,860 36,322 13 32,424 21,998
14 117,391 2,491 14 34,597 28,169 14 24.219| 17,371
15 115,599 2,542 15 33,367 27,404 15 22,997 16,793

Fig. 8. Number of subexpressions and of distinct subexpressions by classification and
by subexpression size

# |Expression # |Expression # |Expression
717 -1 1053 (L) 1197] [z —y]
15657 L? 3399  (z,t) 1163| (n—1)
7903 dz 2230 (z,y) 920 (t—-s)
5661 o 2229 [0, T 799 | (n—2)
4837 | wo 1985 —1/2 33| u(t)
4752 | o 1727 (x,€) 569 | (t,.)
a462| 8 1547| [0, 1] 508 | (z—y)
4459 | 45 1374 (o) 99| n2
4095 tx 1327 (to) 496 | |Vul?
3874 dt 1206 (R") 441 20, R®

Fig. 9. Most frequent subexpressions of size 2 and of size 4-5 in subject classification
classification Partial Differential Equations (35).

steadily as the size increases: there are about 2 expressions of size 8 occurring
for each distinct expression of size 8, and the ratio is less than 1.5 for size 15.

This analysis provides a weighted dictionary for each subject classification,
providing the frequency that expressions occur in each subject classification.
Space limitations preclude giving a detailed accounting of the particular expres-
sions which occur most frequently in each classification, but we give a sample
from the classification 35, Partial Differential Equations. These are shown in
Figure 9. More details are available in [7]

The information in this weighted dictionary may be used directly by applica-
tions, or may be used for further analysis. Two such directions of further analysis
are deriving expression patterns, and deriving common writing sequences.
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Expression Patterns

We note that very similar subexpressions may occur frequently, for example
VA2 + B2 and /22 + y2. While it is possible to maintain a weighted dictionary
keeping track of both of these expressions, it would be more desirable to deter-
mine that \/ a? + 32 was a frequently occurring pattern, with suitable choices
of o and .

“Antiunification” provides an elegant ramework (o defline such patterns. An-
tiunification is a process dual to unification. Rather than taking expressions and
determining the most general expression to which they all can be specialized,
antiunification takes a number of instance expressions and finds the least general
expression which may be specialized to each instance expression. The syntactic
form of antiunification has been studied since the 1970s [6].

We may determine the set of patterns from a weighted dictionary by consid-
ering all pairs of expressions. Each pair will give an antiunifier. We then consider
all pairs of antiunifiers with expressions from the dictionary. These may give more
antiunifiers, which are added to the set of antiunifiers. We continue to consider
pairs of antiunifiers with expressions until no new antiunifiers are generated.
Since antiunification is associative, this generates a complete set of antiunifiers
for the dictionary. For each antiunification, we may use the one pass algorithm
of [9].

We may associate weights with these patterns simply: for each antiunifier,
attempt a unification with each expression in the weighted dictionary. Then
the weight of the antiunifier is the sum of the weights of the expressions with
which it unifies. We note that since we are interested in syntactic expressions,
this entire process of antiunification and unification is syntactic. An ewmpirically
derived, weighted dictionary of antiunifiers would provide an interesting measure
to select among possibilities for “simplified” forms in a computer algebra system.

Tree-Order Symbol Seqgences

The second direction we wish to discuss for deriving expression patterns is the
use of ordered tree traversals. We examine this in support of mathematical hand-
writing recognition.

For each type of tree node, we define a traversal order corresponding to the
most common writing order. For example, with

the summation sign is usually written first, followed by the equation ¢ = 0, then
oo, and finally 2. Ideally the information on writing order for each node type
should be determined with user experiments. Without these experiments, it is
still possible to have writer-specific traversal order.

Given one or more traversal orders for each node type, we may then examine
the weighted dictionary of expressions, traversing each expression, to determine
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Markov chains for symbol sequences. If the expression ), ... occurs twice as
frequently as }>;_; ..., then the symbol sequence (X, i) gets twice the weight
of (X, 7). If there is not a unique traversal order for a node type, then the
alternatives may be weighted.

One can easily imagine additional uses of this kind of empirical data on
expression frequency.

7 Conclusions

We have proposed the idea of empirical analysis of mathematical literature as a
new technique to be used in the design of sophisticated mathematical software.
This is a break from the tradition of system designers using their own preferences
or prejudices in determining which forms of expressions will be deemed most
preferable by their systems.

We have taken presented an approach to performing empirical analysis of a
body of mathematical literature. We have developed a suite of tools to convert
raw TEX source to well-formed MathML, and to build weighted dictionaries of
symbols and expressions.

We have made an analysis of all articles from arXiv.org since the new MSC
2000 subject classification. From this, we have observed that the use of mathe-
matical symbols varies considerably from area to area and have produced usage
frequency tables for all MSC 2000 classification areas. We have observed that,
while the specifics of which symbols are most used varies from area to area,
the overall distribution of symbol use is very similar between areas. This is true
both for symbols used as identifiers (function names and arguments), and as
operators. We have also analyzed the collection of subexpressions present in the
arXiv.org data. As well as developing a weighted dictionary for each classifica-
tion area, we have observed some general properties of the frequency of distinct
expressions.

Beyond these practical experiments, we have explored the potential use of
information derived from symbol and expression weighted dictionaries. These
have included particular applications to computer algebra, mathematical hand-
writing recognition and document analysis. We have also shown how weighted
expression dictionaries may be used to determine further useful information, in-
cluding weighted pattern dictionaries (by antiunification) and Markov chains for
symbols in writing-order traversal of expression trees.

The applicability of these results depends on how representative the empirical
data is. It is likely that different tables would be obtained from high-school math-
ematics texts, for example. Therefore, the overall approach we have taken is just
as important as the specific results for this particular mathematical database.

We are excited and hopeful that the use of empirically gained knowledge may
make mathematical software systems more powerful and more natural to use.
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