Description and generation of mathematical web services

Marc-Laurent Aird, Walter Barbera Medina, James Davenport, Julian Padget
Department of Computer Science
University of Bath
BATH BA2 7AY, UK

{mapma,wbm,jhd,jap}@cs.bath.ac.uk

ABSTRACT

The evolution of the web into a repository of documents and re-
sources for programs to read instead of humans and in which pro-
grams are published as services and invoked through messaging of-
fers some interesting technical challenges, as well as opportunities,
for mathematical software. The aim of the MONET [11]* project
is a proof-of-concept, building on the standards defined so far by
W3C, to demonstrate that (a) mathematical web services can be
simply constructed and deployed (b) precise descriptions of math-
ematical services can be written and published (c) basic brokerage
facilities can be built identifying services that match the problem
(d) advanced brokerage facilities can be built orchestrating several
web services to solve a problem In this paper we focus on the first
two aspects and provide a brief outline of the second two, all illus-
trated by reference to services involving the NAG library and the
Maple computer algebra system.

1. INTRODUCTION

Currently, the web is a vast collection of information stored in a
variety of formats and held loosely together by hyper-links. This is
fine for human surfers who are able to filter out excess noise and
understand natural languages, but it is no use if we want machines
to be able to process and understand information. The next step is
the semantic web [1], where information is encoded according to
well-defined vocabularies that are designed to make the meaning
of data explicit and unambiguous. The development of this vision
will make it possible to automate a wide variety of sophisticated
interactions, which today require human intervention.

The aim of the MONET project is to demonstrate the applicability
of the semantic web to the world of mathematical software, us-
ing sophisticated techniques from Al and mathematics to match
the characteristics of a problem to the advertised capabilities of
available services and then invoking the chosen services through
a standardised mechanism. The resulting framework is intended
be powerful, flexible and dynamic, yet robust and easy to navigate,
putting state-of-the-art algorithms at the disposal of users anywhere
in the world.

This paper discusses the MONET architecture and describes the
work carried out to date on building a demonstration symbolic math-
ematics web service. For the Bath demonstrator we have chosen to
use Maple as the computer algebra system, but in principle any
system could be used in the same way, for example, Reduce, Ax-
iom, GAP, Magma. The key requirement is support for OpenMath

1The MONET project (npnet . nag. co. uk) is funded by the
Commission of the European Communities Information Society
program (project 1ST-2001-34145)

Problem definition layer:
o client defines problem in terms

Client—Agent Interaction of inputs, methodologies and out-
comes

o client allocates problem to agents,
defines budget, sets priority

ith client defiihes task
olutions and deledlés to agent

Resource negotiation layer:
Agent trading floor
Client/Server Brokers
Mathematical Services

o agent analyses problem to estab-
lish resources required and nego-
tiates with other agents to obtain
them

owners offiél facilities ~ agents utili§e facilities

Grid computation layer:

e Computing facilities available via

Grid computing network resource management agent

o Specialised or spare resources

o Owners offer facilities

Figure 1: MONET and the Grid

or MathML input and output, although this functionality can be
achieved by wrapping the algebra system within a phrasebook that
carries out translation between these network-neutral representa-
tions and the system’s presentation language. A similar symbolic
service based on Maple has also been developed at the University of
Western Ontario (UWO), while complementary numerical service
has been developed by the Numerical Algorithms Group (NAG) at
Oxford [13]. We begin with a brief overview of the MONET ar-
chitecture, before taking a detailed look at service description and
the current demonstration service, explaining how it is invoked, and
the types of information passed through the service and across the
web. In its completed state such a service will be discovered dy-
namically by a broker or planner by matching client requirements
and problem descriptions to properties of advertised services.

The client, broker and each service will describe mathematical ob-
jects using OpenMath [12, 3], an extensible semantic format for un-
ambiguously describing mathematical objects and properties, em-
bedded within Mathematical Service Description Language (MSDL)
documents, which extend the information currently provided by
Web Service Description Language (WSDL) documents. Open-
Math describes mathematical concepts by way of symbols defined
in Content Dictionaries (CDs). For example, the function sin is
found in the transcl CD of transcendental functions. However, in
keeping with W3C conventions, we do not mandate the use of any
particular technology except XML, so although we write here about
using OpenMath and WSDL, these could equally well be MathML
and IDL, for instance.

query = problem + [service] + [client]
result = OpenMath + error output
SOAP Envelope = hdr + body(OpenMath, Action)

WEB SERVICE
CONTAINER

Service i

Figure 2: General Monet Architecture

MONET can be viewed as complementary to the GRID by build-
ing a problem-oriented application layer on top of grid services, in
which tasks are decomposed for distribution to specialised mathe-
matical services, which themselves are in turn supported by grid-
provided resources, as suggested in Figure 1.

1.1 MONET Architecture Overview

The general MONET architecture is sketched in Figure 2. When
the user submits a problem to a MONET broker (note that there is
no notion of a centralized brokerage service: MONET brokers are
expected to be instantiated on a per-client basis, as shown here),
they may choose either then or later to delegate service negotia-
tion, selection and invocation to the broker, or they may simply use
the broker as an intelligent search engine which will return a collec-
tion of available services or even an execution plan choreographing
multiple services.

In respect of our demonstrator, most code has been written in Java,
and services have been deployed using AXIS [10]. In order to
meet our requirement of using OpenMath as the content language
in client-server communication, we wrote a Maple phrasebook to
translate OpenMath into Maple’s input language. This Java phrase-
book has been developed using the RIACA OpenMath Library [9]
and mainly covers symbols from the MathML CD Group [12].
It has been made into a web service too and is available through

describes the type of problem a service solves by specifying
inputs, outputs, post- and pre-conditions. This form of prob-
lem description is also re-used in the client’s query.

o Reference to taxonomies. This is the easiest way to describe
what a service does. It is intended that MONET will develop
a taxonomy based on GAMS (Guide to Available Mathemat-
ical Software) [7], in particular to include sub-categories un-
der the current all-inclusive “Symbolic Computation” node.

e Supported Semantics. For example this could be a list of
OpenMath CDs supported. If the CD calculusl is listed then
the service could be a candidate for solving integration prob-
lems. Likewise, if the minimax1 CD were on the list, then
the service could maybe handle optimisation problems.

e Supported Directives. These are verbs used to describe the
type of action a service performs, and also would form part of
the client query. Examples include solve, prove and decide.

Implementation Details: information about the specific service

e A reference to an Algorithm Description. Again, an Open-
Math CD, containing symbols for describing algorithmic com-
plexity, will be produced.

e Software Details

e Hardware Details

e Algorithmic Properties. These could include such properties
as accuracy and resource usage.

e Descriptions of actions needed to solve a problem. These are
used in the case where a service requires several steps to per-
form a computation and could be such actions as initialise,
exec, stop. These actions are also included in the Service
Binding description below, where they are mapped into con-
crete operations.

It should be noted that not all of the Classification or Implementa-

tion details are mandatory.

Service Interface Description: This would typically be a WSDL
document.

Service Binding Description: This is a mapping from abstract prob-
lem components and actions to elements of the service inter-
face, thus allowing calls to the service to be constructed.

Broker Interface: This is the API exposed to the broker by the
service allowing it to generate service instances, perform house-
keeping actions etc. Typically it would consist of a service
URI and an interface description.

http://agentcities: 8070/ axi s/ servi ces/ OMMapl eTransl ati onServi ce?

wsdl . Fortunately, Maple has the option of generating MathML
output and it is relatively simple to transform that into OpenMath
when returning the result of the service.

2. SERVICE DESCRIPTION

In MONET terms a service is defined by the combination of its
Mathematical Services Description Language (MSDL)[2] document
which contains mathematical information about the type of prob-

lems the service solves and logistical information (software-dependent)

such as the invocation protocol, cost, etc. We expect that a Maple
developer would be required to complete the mathematical parts
of the MSDL, while much of the rest would be static across all
such symbolic services regardless of the underlying computer al-
gebra system. A Mathematical Service Description consists of the
following (note how the MSDL provides an extended service de-
scription intended to wrap around WSDL):

Classification: specification of what the service does
e Reference to a problem description library. This consists of
a header, containing a bibliographic entry and pointer to an
equivalent problem in some taxonomy, and a body. The body

3. DEPLOYMENT

Some technical details aside, deploying a program as a web ser-
vice is relatively straightforward. Having done a few, it rapidly
becomes apparent that much of the necessary software glue is com-
mon to many services and so we have sought to take advantage of
that in developing a Maple wrapper service, which accepts a piece
of Maple code and then deploys it as a new service on that server.
It has also provided us with the experimental context for the refine-
ment of MSDL as we have tried to deploy a range of mathematical
services. It should be noted that there is nothing specific to Maple
or even computer algebra about this.

3.1 Maple Wrapper Service Architecture

We outline the process of submitting and invoking Maple code in
Figure 3. The Maple wrapper service fulfils two functions: (i) re-
ceiving some Maple code and exposing it as a MONET service by
means of registering an MSDL document, (ii) enabling that code
to be executed remotely by a client. We now discuss these in more
detail.

First, a Maple developer contacts the web service, passing it some

SERVICE INVOCATION | SERVICE CREATION
!
CLIENT * | MAPLE
OpenMath Args |
> seviceClas | | —{ xmL] DEVELOPER
I
* | Maple Code
‘ Maple Invocation File‘ﬁ ‘ PHREF ‘
!) Create - Interface Name
! Service
MAPLE ! MSDL Service Name
I
I
- Result i WSDL MSDL Info
Sorvice Respores [Resut | 1| [wsor |
A |
\
MSDL
Discover MSDL MONET
o BROKER

Figure 3: Architecture of the Maple Wrapper Service

Maple code, a name for their service, a Maple procedure name
identifying the entry-point, and some MSDL information specific
to their code and the type of problem it relates to. From this the
service creates an XML file on the server containing invocation in-
formation such as the Maple code. An MSDL file is also created
containing a reference to a problem description file in terms of in-
puts, outputs, pre-conditions and post-conditions.

To invoke the code, a client provides the service name and some
appropriate mathematical arguments, written in OpenMath, which
correspond to the inputs in the problem description. The Web ser-
vice creates a temporary invocation file which reads in the Maple
code from the XML file, and invokes it using the procedure name
provided by the Maple developer together the arguments passed by
the client. This temporary file is executed in Maple from the com-
mand line, and the result returned to the client.

It should be noted that there is essentially only one actual web ser-
vice which stores mathematical descriptions and executes Maple al-
gorithms. Each Maple service created results in a different MSDL
file which can be registered with a service discovery broker. Al-
though each MSDL contains its own WSDL describing how to ac-
cess the web service, the latter is just a mask, as all Maple services
end up invoking our wrapper service. That is to say, the submission
of each mathematical problem description can be thought of as a
Maple service which can be executed through its own web service,
although it is not strictly a web service in its own right as they all
invoke the MapleWrapper Service. This should become clearer as
we work through some examples in Sections 3.4, 4.1 and 4.2.

We now go on to describe the MSDL parts we expect a Maple de-
veloper to provide, which parts we expect to be provided by the
Web service, and how these are described in the MSDL document.
Typically, problem specific information will be provided by the
Maple developer, while the web service will provide information

which will be static across all such Maple services and possibly
most computer algebra services.

3.2 Maple-Developer Provided Information
We expect the Maple developer to submit the following information
in order to create the Maple service.

Some Maple code.

An interface name used to invoke the Maple code.
A service name.

A Mathematical Problem Description.

A taxonomy reference.

A list of supported directives.

A list of algorithm references.

A description of the algorithmic properties.

We illustrate this information by way of a numerical integration
example. This example is equivalent to the numerical service de-
scribed in [13].

3.21 Maple Code and Interface Name

Suppose a Maple developer writes the a procedure for numerical
integration using the Gauss Legendre method [5, 8] and wishes to
expose it as a web service (this example and all the relevant code is
in [6]). Firstly, that Maple code will be stored in a file. Secondly,
the Maple developer submits the name of the procedure which ex-
ecutes the service, the so-called interface name, which in our case
happens to be gausl eg.i nt 1. Finally, we specify each argument
of this procedure: a function, a variable, the upper and lower bound
of the range of integration, and a desired level of accuracy, through
variable names and OpenMath descriptions. A legitimate Maple
invocation of such procedure could be:

gausleg_intl(1/(1+x72), x, -1, 1, 0.001);

In addition we need to specify the return values: a list consisting
of the numerical approximation to the solution, plus a bound on
the accuracy of that solution. For this reason, we require from the
Maple developer a complete problem description in terms of inputs,
outputs, pre- and post-conditions, as described in Section 2.

3.2.2 Mathematical Problem Description

The purpose of the MSDL document is twofold: (i) To provide a
client with information about how to invoke a particular service,
(ii) To permit a broker to match a client’s query to a service which
could solve it. The mathematical problem description is thus a very
important part of the service description as it can be used by the
broker when choosing an appropriate service, and by the client to
see the types of the input arguments the service accepts. Conse-
quently it is crucial that we have a problem description in Open-
Math of the inputs, output, pre- and post-conditions. While this
general concept is fairly well understood in formal software engi-
neering, its application to the definition of mathematical services is
novel and needs much more work. If the service describer is un-
familiar with OpenMath — and since the notation is fairly human-
unfriendly — then it might perhaps be practical to make use of a
phrasebook for translating from a language with which they are fa-
miliar into OpenMath. An example of a problem description for
the numerical integration service in question is:

. F:R—R
.a€eR
.beR

. X

1
2
Input: 3
4
5. eeR
1
2
1
2

.ITeR
. EeR
. E<e
. |I—fabf(x)dm|<E

Output:

Post-Condition:

A corresponding MSDL problem description encoded in XML is
listed in the appendix to [6]. The problem description will normally
be located in a separate file and referenced from the MSDL file, for
example:

<monet:classification>
<monet:problem href="http://www.cs.bath.ac.uk/
“mapma/Monet/num_int_problem_desc.xml"/>
</monet:directive-type>

3.2.3 Other MSDL entries
We now describe the other elements of the MSDL which we expect
the Maple developer to provide.

Taxonomy Reference The example above corresponds to numer-
ical routines listed in the H2alal category in the GAMS clas-
sification, namely Automatic 1-D finite interval quadrature (user
need only specify required accuracy), integrand available via user-
defined procedure. The following snippet would be included in the
MSDL document to describe this reference:

<monet:classification taxonomy=
"http://gams.nist.gov/" code="H2alal"/>

It is expected that the Maple developer would choose which node(s)
in the taxonomy best match their proposed service by choosing
from a published list. We may also have a taxonomic reference
within the Algorithm Reference element as shown below.

Directive Directives are the verbs which describe what types of
actions a service performs. The numerical integration example we
are describing falls under the category of services that evaluate.
However, a generic Maple service would be able to perform other
actions such as prove or decide. An example of how one might
include the directive within the MSDL is given below.

<monet:classification>
<monet:directive-type>
http://monet.nag.co.uk/monet/directive#evaluate
</monet:directive-type>
</monet:classification>

Again we should expect to be able to prompt the Maple developer
to choose from a list of URIs for possible directives. It should be
noted that we can include more than one directive.

Algorithm Reference The MSDL schema states that an algorithm
description has to refer to the problem it solves and must have a
name by which it can be referred to. It can also include taxonomy,
complexity and bibliographic information. Figure 4 give an exam-
ple which includes two bibliographic references and a taxonomic
reference.

Algorithmic Properties For this particular example, we may wish
to advertise the fact that N-point Gauss-Legendre Integration is ex-
act for polynomials of degree d < 2N — 1. Algorithmic properties
can be listed in MSDL either by using a reference, or using a de-
scription using some namespace. For example, the property could
be described in English using the xhtml namespace, or perhaps us-
ing OpenMath as shown below, which is equivalent to the more
human-readable notation:

Vf: feR[z] Adegree(f) <2N —1 :I:/bf(x)dx

<monet: implementation>
<monet:algorithmic-properties
name=""Gauss Legendre N-point Quadrature"
xmIns:om="http://www.openmath.org/OpenMath'>
<om:OMOBJ>
<om:OMBIND>
<om:OMS cd="‘quantl’ name="forall'/>
<om:OMBVAR>
<om:0MV name=""f"/>
</om:OMBVAR>

<om:OMA>
<om:OMS cd="logicl" name="implies"/>
<om:OMA>
<om:0MS cd="logicl" name="and"/>
<om:OMA>

<om:OMS cd="'setl" name="in"/>
<om:0MV name=""f"/>
<om:OMS cd=""polysts" name="‘polynomial_ring"/>
</om:0MA>
<om:OMA>
<om:OMS cd="relationl" name="leq">
<om:OMA>
<om:0MS cd="poly" name="'degree"/>
<om:0MV name=""f"/>
</om:0MA>
<om:OMA>
<om:OMS cd=""arithl" name="minus'/>
<om:OMA>
<om:0MS cd="arithl" name="times"/>
<om:OMI>2</om:OMI>
<om:0MV name="N"/>
</om:0MA>
<om:OMI>1</om:OMI>
</om:0MA>
</om:0MA>

<monet: implementation>

<monet:algorithm name="Gauss Legendre N-point Quadrature"

href="http://www.cs.bath.ac.uk/"mapma/Monet/num_int_problem_desc.xml">
<monet:taxonomy taxonomy="http://gams.nist.gov" code="H2alal"/>
<monet:bibliography name="Introduction to Numerical Analysis"
href="http://www.ams.org/msnpdf/a0075670.pdf"/>
<monet:bibliography name="Numerical Recipes:The Art of Scientific Computing”
href="http://www.ams.org/msnmain?co3=AND&dr=al 1&fmt=doc&fn
=105&1d=98a_65001d&1=100&pg3=T1&pg4=ET&r=1&s3=numeri
cal%20recipes®h3A%20the%20art®%200f%20scientific%20com

</monet:algorithm>
</monet:implementation>

puting&s4=Books"/>

Figure 4: Example of an Algorithmic Reference in MSDL

</om:0MA>
<om:OMA>
<om:0MS cd="relationl™ name="eq"/>
<om:0MV name="1""/>
<om:OMA>
<om:OMS cd=""calculusl" name="defint"/>
<om:OMA>
<om:0MS cd="intervall™ name="interval"/>
<om:OMV name="'a
<om:OMV name="b"/>
</om:0MA>
<om:OMBIND>
<om:0MS cd="fnsl1" name=""lambda"/>
<om:OMBVAR>
<om:0OMV name="x"/>
</om:0OMBVAR>
<om:OMA>
<om:OMV name="f"/>
<om:0OMV name="x"/>
</om:0MA>
</om:OMBIND>
</om:0MA>
</om:0MA>
</om:0MA>
</om:0OMBIND>
</om:0MOBJ>
</monet:algorithmic-properties>
</monet:implementation>

3.3 Information Provided by the Service Host
In this section we discuss parts of the MSDL which are added to
the Maple developer’s input by the Maple wrapper service. These
include the following:

Service Interface Description
Service Binding Description
Broker Interface

Software Details

Hardware Details

Supported Semantics
Actions

We include typical examples of some of these in Figure 5.

3.4 Service Creation and Invocation

In this section we explain how the Maple code supplied by the de-
veloper is turned into a Maple service. We describe the process of
service invocation by way of a generalised example.

3.4.1 Handling the Maple Code

After the entering all the required parts of the MSDL as described
in Section 3.2 along with the Maple code and the interface name
which will allow the invocation of the service, the Maple wrapper
service creates three permanent files: an MSDL file, a problem de-
scription file which is internally referenced within the MSDL file

and an XML file containing information about the invocation of the
service.

<Service name="nameService'>
<Code>

interfaceName := proc(argl, ., argN)

end proc:
</Code>
<Interface name="interfaceName"/>
</Service>

Other parts of the MSDL file are described in Section 3.3.

3.4.2 Calling The Service

The calling of a particular Maple service uses its particular WSDL
(see Section 3.3) and a sequence of OpenMath arguments which
represent the mathematical inputs. However this WSDL, as we al-
ready pointed out in section 3.1, is just a cover for the front-end of
our wrapper service and is invoked thus (in Java):

String mResult =
callService(nameService, OMObject arguments[]);

The method cal | Servi ce performs many operations. Essen-
tially it executes the Maple code for the service called nane-
Ser vi ce, passing it the OpenMath objects from the array ar -
gunent s. The arguments are first translated into strings of valid
Maple via the phrasebook and the code is executed by dynamically
creating a file (naneSer vi ceExecut i onCode) containing the
following Maple commands:

restart:
Maple code from nameService.xml inserted here
interfaceName := proc(args)

end proc:

output := MathML[ExportContent]
(interfaceName(argl, .., argN)):

fd := fopen(‘'nameServiceResult”, WRITE):

fprintf(fd, "%s",output): fclose(fd):

whereargl, .., argNarethe OpenMath inputarguments sup-
plied by the client after translation to valid Maple syntax, and i n-
t er f aceNane has been lifted from the file naneSer vi ce. xm
described above. The Maple code above reads in the procedure def-
inition(s) stored in the file naneSer vi ceCode so that it can be
executed. This execution code is then run in Maple by running the

command line call:
String command = ""/opt/maple8/bin/maple ™

+ nameServiceExecutionCode;
Process p = Runtime.getRuntime() .exec(command);

WSDL: WSDL information is included in the Service Interface Description of the MSDL. It can either be referenced by

a URI as shown below or listed verbatim.
<service-interface-description
name=""nameServiceWSDL"

href="http://agentcities:8090/axis/services/ServiceName?wsdl'>

</service-interface-description>

Software Details: For our purposes the main software used will be Maple. Thus the MSDL entry should look like:

<monet:implementation>
<monet:software name="maple8"

href="http://www._.maplesoft.com/products/Maple8/index.shtml"/>

</monet:implementation>

Hardware Details: All our services run Maple computations on the Agentcities machine:

<monet: implementation>
<monet:hardware name="Agentcities"

href="http://agentcities.cs.bath.ac.uk:8090/axis"

</monet:implementation>

Supported Semantics: All services will support OpenMath as the main way to describe mathematical expressions. A list of supported
OpenMath symbols could also be given. These would correspond to the symbols supported by the Maple Phrase-

book, for example:

<monet:semantics name="‘OpenMath-MathML-CD-Group"
href="http://monet.nag.co.uk/cocoon/openmath/cdfiles/cdgroups/mathml _html"/>

Figure 5: Examples of functional and non-functional constraints

Service serviceMathML20M = new Service();
Call cal IMathML20M =
(Call) serviceMathML20M.createCall();

String endpoint =
"http://agentcities.cs.bath.ac.uk:8090/axis/”>” +
""services/MathMLTranslator"';

cal IMathML20M. setTargetEndpointAddress(
new java.net.URL(endpoint));

cal IMathML20M. setOperationName(
new QName(endpoint,"getOpenMath™));

String ret =
(String) callMathML20M. invoke(new Object[] {mResult});

// Get returned an OpenMath object
OMXMLReader tReader = new OMXMLReader(ret);
fOMOutput = tReader.readObject();

return fOMObject;

Figure 6: Java code for making a service call

As can be seen from the Maple execution code, the output is placed

inthe file nanmeSer vi ceResul t and contains a string of Content-
MathML. The cal | Ser vi ce method reads this file and returns

the string which can then converted to an OpenMath object and

returned to the client as in Figure 6.

Finally, the files nameSer vi ceExecut i onCode and namne-
Servi ceResul t are deleted. Note how the code calls another
web service (Mat hMLTr ansl at or) to convert the Content-MathML
output from Maple in to OpenMath.

Thus the Maple service exists only in its nameSer vi ce. xm file,
and each execution is performed by creating temporary files on the

fly.

3.4.3 Remarks

WSDL.: There is one WSDL file for each Maple service deployed
in this fashion. This WSDL file relates indirectly to a single
web service though (the Maple wrapper service) which will
execute all submitted Maple procedures. This WSDL file

will be “dynamic” across all MSDL files for services created
using the Maple wrapper service. The details here explain
that services are executed by giving as arguments

e A string which is the name of the desired Maple service
(nameSer vi ce)

e Anarray of OpenMath arguments representing the Math-
ematical arguments being passed to the Maple proce-
dure.

Multiple Service Invocations: The above description works only
for single service invocations. In the instance where two
clients wish to run the service at the same time, name clash
between the temporary files can be avoided by combination
with an invocation-unique key.

Some Error Handling Capability: Some new Maple code has been
introduced to pick up errors. It handles syntax errors as well
as exceptions caused by using, for example, the wrong num-
ber of arguments to a Maple procedure. The following code
uses Maple’s try, catch and finally structure. When a ser-
vice is invoked, the code shown below is copied into a file to
be executed by Maple on the command line. The Java class
invoking the service reads the output file to check whether
the output is indeed MathML-C. If so, then a translation to
OpenMath takes place and the result is returned. Otherwise,
it is assumed an error had been encountered and the error
string is returned inside an OpenMath error element. This
is obviously unsatisfactory, but since only computed results
are output in XML-tagged form at present, it is a reasonable
compromise which at least ensures the delivery of some in-
formation about the service computation.
restart:
interface_name := proc(argl, arg2)

some maple code

end proc:
errorflag := O:
try
maple_out :=
interface_name(parse(argl, statement),
parse(arg2, statement)):

catch:

errorflag := 1:

output := lastexception[2]:
finally:

if (errorflag = 0) then

output := MathML[ExportContent](maple_out):
nd if;
idd:= %open("/tmp/serviceNameOutput", WRITE):
fprintf(fd, "%s',output):
fclose(fd):
end try:

Handling Multiple Results: We have yet to properly address the
case of multiple results. At present the Maple code writ-
ten typically returns a set or list when the service produces
multiple results. For example, the numerical integration rou-
tine returns a list comprising the approximate solution to-
gether with a bound on the accuracy of that solution. This
is translated to an OpenMath list object. However the prob-
lem description states that the service returns two separate
objects. It is not yet clear how this should be handled. One
approach we considered was to check the length of the list (in
the Maple code above) and return each element of the list in
a separate numbered file. Then the Java code reads the prob-
lem description to find the number of required outputs and
looks for that many files. However this relies on using the
nops() function in Maple. We found problems with such
Maple types as fractions, where nops() returns two, where
the operands are the numerator and the denominator.

Service Response Object: With a view to a forthcoming explana-
tion ontology [4] responsible for providing a meta-structure
in which to state the nature and existence of explanations,
we decided to package the results of service invocations in-
side a service response object. This Service Response object
carries some extra information such as the service name, in-
put arguments, problem description, Maple procedure, code
executed by Maple and the Maple return in both syntaxes —
Maple and OpenMath. It also contains a log of all the com-
mands executed by the service invocation in order to ease the
task of testing any possible problem during the execution of
such maple code.

Argument Types and Bindings: Our service could include the ca-
pability to check the client’s input argument types against in-
put types in the problem description. This would typically in-
volve calling another service to reason mathematically about
the types of the OpenMath objects. This will undoubtedly be
done by part of the broker, when attempting to match queries
to services. However, it would be useful for our service to
check the arguments that are actually finally supplied by the
client, so as to avoid having to handle Maple errors.

3.5 Demonstrations
The Maple Wrapper service URL is http://agentcities.cs.

bat h. ac. uk: 8090/ axi s/ SMapl e/ ser vi ces/ i ndex. j sp, whence

one may add, remove, update, listand invoke Maple services. When
adding a Maple service the client is prompted to submit details such
as service name and Maple code. The client must also specify the
number of inputs, outputs, pre-conditions and post-conditions, and
is then prompted to enter descriptions of these in OpenMath. When
invoking a Maple service through the Maple Wrapper service, a
client fills out fields providing the service name and input argu-
ments in OpenMath.

The demonstration provided here is still quite basic, and does not
yet allow for complete MSDL descriptions of the Maple services.
The WSDL for the Maple wrapper service can also be viewed at

http://agentcities.cs.bath. ac. uk: 8090/ axi s/ servi ces/

Mapl eW apper Ser vi ce?wsdl .

4. EXAMPLE MAPLE SERVICES

We now describe two Maple services which have been deployed
using the Maple wrapper service described above.

4.1 A Symbolic Integration Service

The first example is a simple service which uses Maple’si nt com-
mand to compute a definite integral symbolically. The Maple code
for this service is detailed in the appendix to [6], while a valid
Maple execution of this service is:

symbolic_def_integration(((x)"(2)72),x,-1,1);

4.1.1 AProblemDescription

A suitable problem description for our symbolic integration service
is given below. It details as inputs a function (the integrand), the
upper and lower limits of integration, and the variable with which
to integrate with respect to. A snippet of this problem description
from the MSDL document is given in the appendix to [6]. Exten-
sions to the service could be to include checks on the suitability
of the integrand and the integration limits. Thus we would include
pre-conditions on the input, such as continuity of the integrand, to
the problem description.

1. F:R—>R
2. x
Input:
npu 3. aeR
4. beR
Output: 1. TeR
Post-Condition: 1L I=["f(x)dz

4.1.2 Sample Invocation of the Service

Invoking this Maple service with the arguments described above
(and in OpenMath in the appendix of[6]) results in the following
correct response in OpenMath.

<OMOBJ>
<OMA>
<OMS cd=""numsl1l" name="'rational"/>
<OMI>1
</OMI>
<OMI1>3
</OMI>
</0OMA>
</0OMOBJ>

Also included in the appendix of [6] are extracts from the actual
SOAP messages sent to and received from the service upon invo-
cation. These messages show how the OpenMath input arguments
and the answer are packaged within the call to the web service.

4.2 A Root-Finding Service

This section describes the Maple code behind a simple root-finding
service which uses Maple’s sol ve function. The Maple procedure
accepts a set of equations, and a set of dependent variables to solve
for. The procedure returns a set of solution sets. The Maple code
for this service is listed in the appendix of [6]. This can be invoked
in Maple by (for example):

simple_solver({x-y-1, x"2*y"2}}, {x,y});
4.2.1 A ProblemDescription

This problem description is less straightforward. For a simple root
finding service which uses Maple’s sol ve command, the inputs

1. A set of m polynomial
equations in n unknowns:

Input: G={g1,...9m}

2. A set of n variables:
{x1,$2p..,xn}

1. Aset of [solutions:
{(alyl, a1,y ... anyl),
(ahz,agg,...ang),
...(alJ,agJ,...anJ)}
where
a1,5,02,k,---0n,j € (®

1. The [solutions satisfy the

m equations:
Post-Condition: gi(al,j7 A2,5y -y an’j) =
0, Viel,...,mje
1,...,1

Output:

Figure 7: A root finding service description

should be a set of equations, and a set of variables to solve with
respect to. The output should be a set of solutions, with the post-
condition being that the solutions satisfy the original equations.
The description appears in Figure 7.

4.2.2 Sample Invocation of the Service

If we try this service on the set of equations G' = {z—y—1, 2%y},
and the variables {z, y} (expressed in OpenMath in the appendix to
[6]), the resultis {{y = 0,z = 1}, {y = —1, 2 = 0}}, expressed
in OpenMath as:

<OMOBJ>
<OMA>
<OMS cd="'setl" name="'set"/>
<OMA>
<OMS cd="'setl" name="set"/>
<OMA>
<OMS cd="relationl" name="‘eq"/>
<OMI1>0
</OMI>
</OMA>
<OMA>
<OMS cd="relationl" name="eq"/>
<OMV name="x"/>
<OMI>1
</OMI>
</OMA>
</OMA>
<OMA>
<OMS cd=""'setl" name="set"/>
<OMA>
<OMS cd="relationl" name="‘eq"/>
<OMV name="y"/>
<OMI>-1
</OMI>
</OMA>
<OMA>
<OMS cd="relationl" name="eq"/>
<OMV name="x"/>
<OMI1>0
</OMI>
</OMA>
</OMA>
</OMA>
</0MOBJ>

Again the SOAP packets describing the request and response ap-
pear in the appendix to [6].

5. CONCLUSIONS AND FUTURE WORK

There are several points of discussion as to the merits of the web
service implemented. The Maple wrapper service assumes abso-
lutely no knowledge of web services or MSDL. Furthermore, we
just expect the Maple developer to know OpenMath in order to
complete a problem descriptions or describe algorithmic proper-
ties. Each mathematical-service description (mostly contained in
the MSDL file) is generated by the wrapper service. All services
are hosted on the same server as the wrapper service itself.

We have designed our service so that it is not necessary to restart
AXxis when new services are added, or existing services updated. So
that others may experiment, we have constructed a down-loadable
package containing all resources needed (web pages,web services,etc).
The installation of such package allows the user to deploy services

in any machine via JSP pages and web services, as we generate a
separate WSDL for each service.

Directions for future work include describing a wider range of math-
ematical services to establish the adequacy of MSDL, building in-
terfaces to other computer algebra systems, tackling the significant
problem of sessions, retention of data (this might be large in some
cases, and it might be pointless to ship to-and-fro between client
and server) and provenance of data. However, these latter issues
are generic and are of concern to the wider e-Science community.

6. REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, May 2001.

[2] S. Buswell, O. Caprotti, and M. Dewar. Mathematical
Service Description Language: Initial Draft. Technical
report, Technical Report Deliverable, The MONET
Consortium, March 2003. Available from
htt p:// nonet. nag. co. uk.

[3] S. Dalmas, M. Gaétano, and S. Watt. An OpenMath 1.0
implementation. In Proceedings of the 1997 international
symposium on Symbolic and algebraic computation, pages
241-248. ACM Press, 1997.

[4] J. Davenport. Mathematical Explanation Ontology: Draft.
Technical report, Technical Report Deliverable, The
MONET Consortium, March 2003. Available from
http://nonet. nag. co. uk.

[5] F. Hildebrand. Introduction to Numerical Analysis. McGraw
Hill, 1956.

[6] marc Laurent Aird. Symbolic Service Initial Beta \ersion.
Technical report, Technical Report Deliverable, The
MONET Consortium, July 2003. Available from
htt p:// nonet. nag. co. uk.

[7] National Institute for Standards. GAMS Guide to Available
Mathematical Software. htt p: // gans. ni st. gov/,
February 2003.

[8] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling. Numerical Recipes. Cambridge University Press,
1987.

[9] Technical University of Eindhoven. RIACA: OpenMath
Library. ht t p: // www. ri aca. wi n. tue. nl/
product s/ openmat h/ i b/ i ndex. ht m , February
2003.

[10] The Apache Project. Jakarta Home Page.
http://jakarta. apache. or g. Last accessed January
2004.

[11] The MONET Consortium. MONET Home Page.
http://nonet. nag. co. uk.

[12] The OpenMath Society. OpenMath website.
htt p: // www. opennat h. or g, February 2003.

[13] S. Turner. Numerical Service Initial Beta Version. Technical
report, Technical Report Deliverable (D10), The MONET
Consortium, March 2003. Available from
http://nonet. nag. co. uk.

