
How fast can we multiply and divide

sparse polynomials?

Michael Monagan

CECM, Simon Fraser University

Joint work with Roman Pearce, Simon Fraser University.

Supported by the MITACS NCE of Canada.

How do we multiply and divide sparse distributed polynomials?

f = a1X1 + a2X2 + · · · + anXn

g = b1Y1 + b2Y2 + · · · + bmYm
(sorted)

h = f · g = ((((f1g + f2g) + f3g) + f4g) · · ·+ fng)

h ÷ g = ((((h − f1g)− f2g)− f3g)− f4g) · · · − fng)

Example:
f = xn + xn−1 + · · · + x
g = ym + ym−1 + · · · + y

I i th merge can do O(im) comparisons (sparse)
=⇒

∑n−1
i=1 im ∈ O(n2m) comparisons in total

How do we multiply and divide sparse distributed polynomials?

f = a1X1 + a2X2 + · · · + anXn

g = b1Y1 + b2Y2 + · · · + bmYm
(sorted)

h = f · g = ((((f1g + f2g) + f3g) + f4g) · · ·+ fng)

h ÷ g = ((((h − f1g)− f2g)− f3g)− f4g) · · · − fng)

Example:
f = xn + xn−1 + · · · + x
g = ym + ym−1 + · · · + y

I i th merge can do O(im) comparisons (sparse)
=⇒

∑n−1
i=1 im ∈ O(n2m) comparisons in total

How do we multiply sparse polynomials?

f = a1X1 + a2X2 + · · · + anXn

g = b1Y1 + b2Y2 + · · · + bmYm
(sorted)

Maple uses divide and conquer – O(mn log m) monomial
comparisons.

f × g = f1 × g1 + f2 × g1 + f1 × g2 + f2 × g2

where f1 and g1 (f2 and g2) are the first (second) half of the terms
of f and g .

Magma uses hashing – mn hashes on monomials Xi · Yj .

for i = 1, 2, ..., n do for j = 1, 2, ...,m do
set Z = Xi · Yj and h[Z] = h[Z] + ai × bj .

How do we multiply sparse polynomials?

f = a1X1 + a2X2 + · · · + anXn

g = b1Y1 + b2Y2 + · · · + bmYm
(sorted)

Maple uses divide and conquer – O(mn log m) monomial
comparisons.

f × g = f1 × g1 + f2 × g1 + f1 × g2 + f2 × g2

where f1 and g1 (f2 and g2) are the first (second) half of the terms
of f and g .

Magma uses hashing – mn hashes on monomials Xi · Yj .

for i = 1, 2, ..., n do for j = 1, 2, ...,m do
set Z = Xi · Yj and h[Z] = h[Z] + ai × bj .

How do we multiply sparse polynomials?

Singular uses geobuckets (Yan, 1998).

Split f into buckets where bucket i has at most 2i terms

Bucket f
1 2xyz
2 − 6x3yz + 5xz2 + 3xz
3 + 4x3yz − 3xyz3 + 2xyz2 + 7xyz + 4
...

...
log(#f) − 7x4y3 + 3xyz3 + 7xyz − 7xz + 4x − 3y + 2

Multiplication and also division are
Sparse case: O(nm log(mn)) comparisons.
Dense case: O(nm) comparisons.

How do we multiply sparse polynomials?

Singular uses geobuckets (Yan, 1998).

Split f into buckets where bucket i has at most 2i terms

Bucket f
1 2xyz
2 − 6x3yz + 5xz2 + 3xz
3 + 4x3yz − 3xyz3 + 2xyz2 + 7xyz + 4
...

...
log(#f) − 7x4y3 + 3xyz3 + 7xyz − 7xz + 4x − 3y + 2

Multiplication and also division are
Sparse case: O(nm log(mn)) comparisons.
Dense case: O(nm) comparisons.

How do we multiply sparse polynomials?

ALTRAN uses a binary heap (S. Johnson, 1974).

x x x x x x
913 10

87654321

6 71

I Heap property: Hi ≥ H2i and Hi ≥ H2i+1.

I Creating is O(n) comparisons where n = #H.

I Heap extraction is O(log2 n).

I Hence, sorting using a heap is O(n log2 n).

How do we multiply sparse polynomials?

ALTRAN uses a binary heap (S. Johnson, 1974).

x x x x x x
913 10

87654321

6 71

I Heap property: Hi ≥ H2i and Hi ≥ H2i+1.

I Creating is O(n) comparisons where n = #H.

I Heap extraction is O(log2 n).

I Hence, sorting using a heap is O(n log2 n).

How do we multiply sparse polynomials?

ALTRAN uses a binary heap (S. Johnson, 1974).

x x x x x x
913 10

87654321

6 71

I Heap property: Hi ≥ H2i and Hi ≥ H2i+1.

I Creating is O(n) comparisons where n = #H.

I Heap extraction is O(log2 n).

I Hence, sorting using a heap is O(n log2 n).

Multiplication using a binary heap.

f = a1X1 + a2X2 + · · · + anXn

g = b1Y1 + b2Y2 + · · · + bmYm
(sorted)

...
...

X Y1 1 1X Y2 2X Y1 iX Yj

(a , b)1 2 i j1 1 (a , b) (a , b) 2 1(a , b)

I O(nm log(nm)) comparisons, O(nm) space.

I coefficient arithmetic using O(1) temporary registers.

Multiplication using a binary heap.

f = a1X1 + a2X2 + · · · + anXn

g = b1Y1 + b2Y2 + · · · + bmYm
(sorted)

...
...

X Y1 1 1X Y2 2X Y1 iX Yj

(a , b)1 2 i j1 1 (a , b) (a , b) 2 1(a , b)

I O(nm log(nm)) comparisons, O(nm) space.

I coefficient arithmetic using O(1) temporary registers.

Multiplication using a binary heap.

Johnson, 1974, a simultaneous n-ary merge:

f = a1X1 + a2X2 + · · · + anXn

g = b1Y1 + b2Y2 + · · · + bmYm
(sorted)

1 1b Y . . .
. . .

1 1b Y . . .

...

1 1b Y

Products

add
Heap

Result
Xa1 1

X2a2

+ b Y2 2+ + b Ym m)

+ b Y2 2+ + b Ym m)

a Xn n + b Y2 2+ + b Ym m)

(

(

(

I O(nm log n) comparisons.

I Space for ≤ n monomials in the heap.

I Can pick n ≤ m.

High Performance

I L1 (32Kbytes): 3 cycles

I L2 (2MBytes): 20 cycles

I DRAM (2Gbytes): 150-200
cycles

I larger polynomial is streamed
into the cache

I products generated inside
cache

I heap fits on chip

I pointers updated in L1/L2

I result written out to memory

Division using a heap.
Johnson’s quotient heap algorithm.

Dividing f ÷ g compute

�
�

�
�f −

#q∑
i=1

qi × g

I O(#f + #q#g log #q) comparisons

I O(#q) working memory

A divisor heap algorithm.

Dividing f ÷ g compute

�
�

�
�f −

#g∑
i=2

gi × q

I O(#f + #q#g log #g) comparisons

I O(#g) working memory

Division using a heap.
Johnson’s quotient heap algorithm.

Dividing f ÷ g compute

�
�

�
�f −

#q∑
i=1

qi × g

I O(#f + #q#g log #q) comparisons

I O(#q) working memory

A divisor heap algorithm.

Dividing f ÷ g compute

�
�

�
�f −

#g∑
i=2

gi × q

I O(#f + #q#g log #g) comparisons

I O(#g) working memory

Minimal heap division (Monagan & Pearce, 2008)

Start with quotient heap, switch to divisor heap when #q = #g .

f −
min(#q,#g)∑

i=1

qi × g

︸ ︷︷ ︸
quotient heap

−
#g∑
i=2

gi × (q#g+1 + · · ·)

︸ ︷︷ ︸
divisor heap

I Does O(#f + #q#g log min(#q, #g)) comparisons

I using O(min(#q, #g)) working memory.

Pseudo Division

Pseudo division scales terms to avoid fractions:

f ÷ g = ((((f − q1

d1
g)− q2

d2
g)− q3

d3
g)− · · · − qn

dn
g)

⇒ (dn . . . (d3(d2(d1f − q1g)− q2g)− q3g)− · · · − qng)

How many multiplications can this do ?
Let #q = n, #g = m, #f = nm:

Then
n∑

i=1

(i + 1)m ∈ O(n2m) multiplications.

Pseudo Division

Theorem.
We can divide f by g , producing a quotient q using
O(#f + #q#g log min(#q, #g)) comparisons.

Additionally:

I Exact polynomial division over Z requires #q(#g − 1)
integer multiplications and #q divisions.

I Pseudo division with remainder over Q does at most
#f + #q(2#g − 1) integer multiplications, #q(#g + 1)
divisions, and #q gcds.

I We need O(1) temporary storage registers for coefficient
arithmetic and O(min(#f , #g)) storage for the heap.
No garbage is created.

Pseudo Division

Theorem.
We can divide f by g , producing a quotient q using
O(#f + #q#g log min(#q, #g)) comparisons.

Additionally:

I Exact polynomial division over Z requires #q(#g − 1)
integer multiplications and #q divisions.

I Pseudo division with remainder over Q does at most
#f + #q(2#g − 1) integer multiplications, #q(#g + 1)
divisions, and #q gcds.

I We need O(1) temporary storage registers for coefficient
arithmetic and O(min(#f , #g)) storage for the heap.
No garbage is created.

Optimizations

Chaining terms in the heap:

Result O(#fg)

732x x x1089 ...

7 g5x 35x x2

fx2 4 3 3x x4

Heap O(#f) O(#f)Products

1f 2g

2f 2g

3f 1g

7x

6x

I terms are chained on insertion

I dense case: O(nm log n)⇒ O(nm) comparisons

Also:

I one word monomials stored directly in the heap

I wordsize integer arithmetic coded in assembly

Optimizations

Chaining terms in the heap:

Result O(#fg)

732x x x1089 ...

7 g5x 35x x2

fx2 4 3 3x x4

Heap O(#f) O(#f)Products

1f 2g

2f 2g

3f 1g

7x

6x

I terms are chained on insertion

I dense case: O(nm log n)⇒ O(nm) comparisons

Also:

I one word monomials stored directly in the heap

I wordsize integer arithmetic coded in assembly

Benchmark 1: sparse unbalanced divisions.

q = (1 + x + y + 2z2 + 3t3 + 5u5)α

g = (1 + u + t + 2z2 + 3y3 + 5x5)β

Intel Core2 3.0 GHz 64-bit

α β #q #g f = q · g f ÷ g max heap real max

4 30 126 324632 2.99 2.77 126 126
8 18 1287 33649 2.27 2.21 1287 1161
12 12 6188 6188 2.44 2.24 12079 3895
18 8 33649 1287 2.38 2.46 2572 1231
30 4 324632 126 2.84 2.53 250 70

I chaining reduces the size of the heap in practice

I division is as fast as multiplication

Representation of polynomials.

“Which Polynomial Representation is Best?”

David Stoutemyer, 1984 Macsyma Users Conference

Distributed or recursive?

9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

or (−5y − 4z2y3) + (−6zy2 + 9zy3)x − 8x3 ?

Sparse or dense?
Variables in or out?

Arrays or linked lists?

Representation of polynomials.

“Which Polynomial Representation is Best?”

David Stoutemyer, 1984 Macsyma Users Conference

Distributed or recursive?

9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

or (−5y − 4z2y3) + (−6zy2 + 9zy3)x − 8x3 ?

Sparse or dense?
Variables in or out?

Arrays or linked lists?

Maple’s sum of products representation.

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

Singular’s distributed representation.

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Maple’s sum of products representation.

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

Singular’s distributed representation.

−4

3

2

0

POLY

−6

1

2

1

−8

3

0

0

−5

0

0

0

x

y

z

1

3

1

9

Trip’s recursive sparse representation.

3

0 1 3

2 3

2 1 1 9

0

−4

−8

−5

−6

POLY x

POLY z POLY z POLY z

POLY y POLY y

(−5y − 4z2y3) + (−6zy2 + 9zy3)x − 8x3

Pari’s recursive dense representation.

30 1 2

30 1 2

zPOLY 5 zPOLY 4

yPOLY 6yPOLY 6

POLY 6 x 0 −8

0 0−5 0 0

−400 0 −6 zPOLY 4

0 1

0 9

Trip’s recursive sparse representation.

3

0 1 3

2 3

2 1 1 9

0

−4

−8

−5

−6

POLY x

POLY z POLY z POLY z

POLY y POLY y

(−5y − 4z2y3) + (−6zy2 + 9zy3)x − 8x3

Pari’s recursive dense representation.

30 1 2

30 1 2

zPOLY 5 zPOLY 4

yPOLY 6yPOLY 6

POLY 6 x 0 −8

0 0−5 0 0

−400 0 −6 zPOLY 4

0 1

0 9

So which representation is best?

Stoutemyer concluded

1. recursive is better than distributed

2. and recursive dense is better than recursive sparse!

So which representation is best?

Stoutemyer concluded

1. recursive is better than distributed

2. and recursive dense is better than recursive sparse!

So which representation is best?

Stoutemyer concluded

1. recursive is better than distributed

2. and recursive dense is better than recursive sparse!

Fateman’s 2003 benchmark.

“Comparing the speed of programs for sparse polynomial
multiplication”, Richard Fateman, March 2003:

f := (1 + x + y + z)20 g := f + 1 p := f · g

Pentium III, 933 MHz, 32 bit machine.

Pari/GP 2.0.17 2.3s (recursive dense array)
MockMMA ACL6.1/GMP4.1 3.3s (recursive dense array)
Hashing ACL6.1/GMP4.1 4.7s (hash on monomial)
Reduce 3.7 (in CSL) 5.0s (sparse recursive list)
Singular 2.0.3 6.1s (sparse distributed list)
Macsyma (in ACL 6.1) 6.9s (sparse recursive list)
Maple VR4 17.9s (sparse distributed array)

Remark: f is 100% dense in the recursive representation.

Fateman’s 2003 benchmark.

“Comparing the speed of programs for sparse polynomial
multiplication”, Richard Fateman, March 2003:

f := (1 + x + y + z)20 g := f + 1 p := f · g

Pentium III, 933 MHz, 32 bit machine.

Pari/GP 2.0.17 2.3s (recursive dense array)
MockMMA ACL6.1/GMP4.1 3.3s (recursive dense array)
Hashing ACL6.1/GMP4.1 4.7s (hash on monomial)
Reduce 3.7 (in CSL) 5.0s (sparse recursive list)
Singular 2.0.3 6.1s (sparse distributed list)
Macsyma (in ACL 6.1) 6.9s (sparse recursive list)
Maple VR4 17.9s (sparse distributed array)

Remark: f is 100% dense in the recursive representation.

What has changed since 2003?

I Computers are now 64 bits.

I Level 2 cache is on the chip.

I New desktops are quad-core.

What has changed since 2003?

I Computers are now 64 bits.

I Level 2 cache is on the chip.

I New desktops are quad-core.

Our SDMP data structure

Packing for x iy jzk in graded lex order with x > y > z :

One word : i + j + k i j k

I monomial > and × are one machine instruction.

Packed array for: 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

x y z

−4 −6 −8 −5

packing

POLY 5

9

dxyz dxyz dxyz dxyz dxyz

5032 4121 3300 00005131

d = total degree

Why graded lex order? Because it’s good for polynomial division.

Our SDMP data structure

Packing for x iy jzk in graded lex order with x > y > z :

One word : i + j + k i j k

I monomial > and × are one machine instruction.

Packed array for: 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

x y z

−4 −6 −8 −5

packing

POLY 5

9

dxyz dxyz dxyz dxyz dxyz

5032 4121 3300 00005131

d = total degree

Why graded lex order? Because it’s good for polynomial division.

Our SDMP data structure

Packing for x iy jzk in graded lex order with x > y > z :

One word : i + j + k i j k

I monomial > and × are one machine instruction.

Packed array for: 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5

x y z

−4 −6 −8 −5

packing

POLY 5

9

dxyz dxyz dxyz dxyz dxyz

5032 4121 3300 00005131

d = total degree

Why graded lex order? Because it’s good for polynomial division.

Our data structure: general case

Axy3z − By3z2 − Cxy2z − 8x3 − 5

−50 00 0−80 03 34 1 2 1

d x y zd x y zd xy zd xy z

5 0 3 2

d x y z

5 1 3 1

x y z

POLY 5

packing d = total degree

GMP data A GMP data B GMP data C

I memory access is sequential

I 8K blocks of terms allocated at a time, chained together

Our SDMP data structure: one word packing

64 bit 32 bit

#variables #bits max deg #bits max deg

2 21 10 1023
3 16 65535 8 255
4 12 2047 6 63
5 10 1023 5 31
6 9 511 4 15
7 8 255 4 15
8 7 127 3 7
9 6 63 3 7
11 5 31 2 3
15 4 15 2 3
21 3 7 1 1
31 2 3 1 1
63 1 1 - -

Space Data
Polynomials #terms density

A = (1 + x + y + z)20 1771 1.0000
B = (1 + x2 + y 2 + z2)20 1771 0.1445
C = (w + x + y + z)20 1771 0.1667

D = (w 2 + x2 + y 2 + z2)20 1771 0.0131
E = (1 + x1 + x2 + ...+ x50)

2 1326 1.0000
E = (1 + x2

1 + x2
2 + ...+ x2

50)
2 1326 0.0042

Table: density = #terms/
(
n+m
m

)
where n = deg f and m = #vars.

Maple Pari Trip Singular SDMP (packed)

A 14,544 2,463 6,465 8,855 3,542
B 14,553 4,233 6,465 8,855 3,542
C 17,634 15,938 14,165 10,626 3,543
D 17,634 26,563 14,165 10,626 3,543
E 8,928 5,150 10,350 68,952 5,304
F 9,078 6,575 10,350 68,952 6,630

Table: Space in words assuming coefficients are immediate integers.

Benchmarks: How should we measure sparsity?

Let #f = #terms(f), m = #vars(f), d = deg(f).

The density of f is Df = #f

(d+m
m)

.

Let f = a1X1 + a2X2 + ... + anX
n, g = b1Y1 + b2Y2 + ... + bmY m.

The work of f × g is Wf×g =
#f #g

|{XiYj}|
. 1 ≤W

nm

2mm!
.

Example: f = (1 + x + y + z)20, g = f + 1.
Df = 1.00, W = 254.15. (#f = #g = 1, 771, #fg = 12, 341).

Example: f = (1 + x2 + y2 + z2)20, g = f + 1.
Now Df = 0.1435 but W = 254.15 is the same!

Example: f = (1 + x + · · ·+ xn), g = (1 + y + · · ·+ yn),
Here Df = Dg = Df×g = 1.00, but the work W = 1.00!.

Benchmarks: How should we measure sparsity?

Let #f = #terms(f), m = #vars(f), d = deg(f).

The density of f is Df = #f

(d+m
m)

.

Let f = a1X1 + a2X2 + ... + anX
n, g = b1Y1 + b2Y2 + ... + bmY m.

The work of f × g is Wf×g =
#f #g

|{XiYj}|
.

1 ≤W
nm

2mm!
.

Example: f = (1 + x + y + z)20, g = f + 1.
Df = 1.00, W = 254.15. (#f = #g = 1, 771, #fg = 12, 341).

Example: f = (1 + x2 + y2 + z2)20, g = f + 1.
Now Df = 0.1435 but W = 254.15 is the same!

Example: f = (1 + x + · · ·+ xn), g = (1 + y + · · ·+ yn),
Here Df = Dg = Df×g = 1.00, but the work W = 1.00!.

Benchmarks: How should we measure sparsity?

Let #f = #terms(f), m = #vars(f), d = deg(f).

The density of f is Df = #f

(d+m
m)

.

Let f = a1X1 + a2X2 + ... + anX
n, g = b1Y1 + b2Y2 + ... + bmY m.

The work of f × g is Wf×g =
#f #g

|{XiYj}|
. 1 ≤W

nm

2mm!
.

Example: f = (1 + x + y + z)20, g = f + 1.
Df = 1.00, W = 254.15. (#f = #g = 1, 771, #fg = 12, 341).

Example: f = (1 + x2 + y2 + z2)20, g = f + 1.
Now Df = 0.1435 but W = 254.15 is the same!

Example: f = (1 + x + · · ·+ xn), g = (1 + y + · · ·+ yn),
Here Df = Dg = Df×g = 1.00, but the work W = 1.00!.

Benchmarks: How should we measure sparsity?

Let #f = #terms(f), m = #vars(f), d = deg(f).

The density of f is Df = #f

(d+m
m)

.

Let f = a1X1 + a2X2 + ... + anX
n, g = b1Y1 + b2Y2 + ... + bmY m.

The work of f × g is Wf×g =
#f #g

|{XiYj}|
. 1 ≤W

nm

2mm!
.

Example: f = (1 + x + y + z)20, g = f + 1.
Df = 1.00, W = 254.15. (#f = #g = 1, 771, #fg = 12, 341).

Example: f = (1 + x2 + y2 + z2)20, g = f + 1.
Now Df = 0.1435 but W = 254.15 is the same!

Example: f = (1 + x + · · ·+ xn), g = (1 + y + · · ·+ yn),
Here Df = Dg = Df×g = 1.00, but the work W = 1.00!.

Benchmarks: How should we measure sparsity?

Let #f = #terms(f), m = #vars(f), d = deg(f).

The density of f is Df = #f

(d+m
m)

.

Let f = a1X1 + a2X2 + ... + anX
n, g = b1Y1 + b2Y2 + ... + bmY m.

The work of f × g is Wf×g =
#f #g

|{XiYj}|
. 1 ≤W

nm

2mm!
.

Example: f = (1 + x + y + z)20, g = f + 1.
Df = 1.00, W = 254.15. (#f = #g = 1, 771, #fg = 12, 341).

Example: f = (1 + x2 + y2 + z2)20, g = f + 1.
Now Df = 0.1435 but W = 254.15 is the same!

Example: f = (1 + x + · · ·+ xn), g = (1 + y + · · ·+ yn),
Here Df = Dg = Df×g = 1.00, but the work W = 1.00!.

Benchmarks: How should we measure sparsity?

Let #f = #terms(f), m = #vars(f), d = deg(f).

The density of f is Df = #f

(d+m
m)

.

Let f = a1X1 + a2X2 + ... + anX
n, g = b1Y1 + b2Y2 + ... + bmY m.

The work of f × g is Wf×g =
#f #g

|{XiYj}|
. 1 ≤W

nm

2mm!
.

Example: f = (1 + x + y + z)20, g = f + 1.
Df = 1.00, W = 254.15. (#f = #g = 1, 771, #fg = 12, 341).

Example: f = (1 + x2 + y2 + z2)20, g = f + 1.
Now Df = 0.1435 but W = 254.15 is the same!

Example: f = (1 + x + · · ·+ xn), g = (1 + y + · · ·+ yn),
Here Df = Dg = Df×g = 1.00, but the work W = 1.00!.

Benchmark 2: A dense Fateman problem.

f = (1 + x + y + z + t)30 g = f + 1

I f and g have 61 bit coefficients

I h = f · g has 128 bit coefficients

Intel Core2 3.0 GHz 64-bit

46, 376× 46, 376 = 635, 376 terms multiply divide
W = 3, 385 p = f × g q = p/f

Maple 11 15986.16 13039.24
Singular 3-0-4 (distributed) 1482.36 364.49
Magma V2.14-7 679.07 610.62

Pari 2.3.3 (w/ GMP) 512.18 283.44
Trip v0.99 (rationals) (recursive) 108.22 -
sdmp (unpacked) 119.94 135.05
sdmp (packed) 47.33 58.44
Arithmetic cost 15.50 15.50

Benchmark 2: A dense Fateman problem.

f = (1 + x + y + z + t)30 g = f + 1

I f and g have 61 bit coefficients

I h = f · g has 128 bit coefficients

Intel Core2 3.0 GHz 64-bit

46, 376× 46, 376 = 635, 376 terms multiply divide
W = 3, 385 p = f × g q = p/f

Maple 11 15986.16 13039.24
Singular 3-0-4 (distributed) 1482.36 364.49
Magma V2.14-7 679.07 610.62
Pari 2.3.3 (w/ GMP) 512.18 283.44
Trip v0.99 (rationals) (recursive) 108.22 -

sdmp (unpacked) 119.94 135.05
sdmp (packed) 47.33 58.44
Arithmetic cost 15.50 15.50

Benchmark 2: A dense Fateman problem.

f = (1 + x + y + z + t)30 g = f + 1

I f and g have 61 bit coefficients

I h = f · g has 128 bit coefficients

Intel Core2 3.0 GHz 64-bit

46, 376× 46, 376 = 635, 376 terms multiply divide
W = 3, 385 p = f × g q = p/f

Maple 11 15986.16 13039.24
Singular 3-0-4 (distributed) 1482.36 364.49
Magma V2.14-7 679.07 610.62
Pari 2.3.3 (w/ GMP) 512.18 283.44
Trip v0.99 (rationals) (recursive) 108.22 -
sdmp (unpacked) 119.94 135.05
sdmp (packed) 47.33 58.44

Arithmetic cost 15.50 15.50

Benchmark 2: A dense Fateman problem.

f = (1 + x + y + z + t)30 g = f + 1

I f and g have 61 bit coefficients

I h = f · g has 128 bit coefficients

Intel Core2 3.0 GHz 64-bit

46, 376× 46, 376 = 635, 376 terms multiply divide
W = 3, 385 p = f × g q = p/f

Maple 11 15986.16 13039.24
Singular 3-0-4 (distributed) 1482.36 364.49
Magma V2.14-7 679.07 610.62
Pari 2.3.3 (w/ GMP) 512.18 283.44
Trip v0.99 (rationals) (recursive) 108.22 -
sdmp (unpacked) 119.94 135.05
sdmp (packed) 47.33 58.44
Arithmetic cost 15.50 15.50

Benchmark 3: A sparse 10 variable problem.

f = (x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7 + x7x8 + x8x9 + x9x10 + x1x10

+ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + 1)5

g = (x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8 + x2
9 + x2

10

+ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + 1)5

Intel Core2 3.0 GHz 64-bit

26, 599× 36, 365 = multiply p = f × g divide q = p/f
19, 631157 terms W = 49.27 (megabytes) seconds (megs) secs

Maple 11 14053.37 10760.36
Singular 3-0-4 (1538) 655.25 (1390) 206.60
Magma V2.14-7 (2365) 313.02 (1753) 5744.60

Trip v0.99 (rationals) (1218) 221.91 –
Pari 2.3.3 (w/ GMP) 109.27 109.69
sdmp (unpacked) (1617) 175.97 (14.4) 162.37
sdmp (packed) (304) 40.33 (3.4) 41.33

Benchmark 3: A sparse 10 variable problem.

f = (x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7 + x7x8 + x8x9 + x9x10 + x1x10

+ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + 1)5

g = (x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8 + x2
9 + x2

10

+ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + 1)5

Intel Core2 3.0 GHz 64-bit

26, 599× 36, 365 = multiply p = f × g divide q = p/f
19, 631157 terms W = 49.27 (megabytes) seconds (megs) secs

Maple 11 14053.37 10760.36
Singular 3-0-4 (1538) 655.25 (1390) 206.60
Magma V2.14-7 (2365) 313.02 (1753) 5744.60
Trip v0.99 (rationals) (1218) 221.91 –
Pari 2.3.3 (w/ GMP) 109.27 109.69
sdmp (unpacked) (1617) 175.97 (14.4) 162.37
sdmp (packed) (304) 40.33 (3.4) 41.33

Benchmark 4: A very sparse 5 variable problem.

f = (1 + x + y + 2z2 + 3t3 + 5u5)12

g = (1 + u + t + 2z2 + 3y3 + 5x5)12

I f and g have 37 bit coefficients

I h = f · g has 75 bit coefficients

Intel Core2 3.0 GHz 64-bit

6188× 6188 = 5821335 terms multiply p = f × g divide q = f /g
W = 6.58 (megabytes) seconds (megs) secs

Maple 11 (2157) 332.71 (2157) 367.46
Singular 3-0-4 (595) 58.91 (572) 39.25
Magma V2.14-7 (1690) 23.77 (180) 151.99

Pari 2.3.3 (w/ GMP) 53.98 30.68
Trip v0.99 (rationals) (552) 4.14 -
sdmp (unpacked) (336) 4.77 (0.3) 5.12
sdmp (packed) (150) 2.02 (0.1) 2.10

Benchmark 4: A very sparse 5 variable problem.

f = (1 + x + y + 2z2 + 3t3 + 5u5)12

g = (1 + u + t + 2z2 + 3y3 + 5x5)12

I f and g have 37 bit coefficients

I h = f · g has 75 bit coefficients

Intel Core2 3.0 GHz 64-bit

6188× 6188 = 5821335 terms multiply p = f × g divide q = f /g
W = 6.58 (megabytes) seconds (megs) secs

Maple 11 (2157) 332.71 (2157) 367.46
Singular 3-0-4 (595) 58.91 (572) 39.25
Magma V2.14-7 (1690) 23.77 (180) 151.99
Pari 2.3.3 (w/ GMP) 53.98 30.68
Trip v0.99 (rationals) (552) 4.14 -
sdmp (unpacked) (336) 4.77 (0.3) 5.12
sdmp (packed) (150) 2.02 (0.1) 2.10

Conclusion

Distributed can be faster than recursive.
But packing monomials is necessary.

Heaps are good!

I Heaps get us #C ∈ O(nm log min(m, n)) worst case
complexity. Optimal?

I Coefficient arithmetic can be done in-place.
No garbage!

I Size(heap) ∈ O(min(m, n)) =⇒ heap fits in cache.

I Multivariate pseudo-division is as efficient as exact division.

I But heaps reduce opportunity for parallelism.

Conclusion

Distributed can be faster than recursive.
But packing monomials is necessary.
Heaps are good!

I Heaps get us #C ∈ O(nm log min(m, n)) worst case
complexity. Optimal?

I Coefficient arithmetic can be done in-place.
No garbage!

I Size(heap) ∈ O(min(m, n)) =⇒ heap fits in cache.

I Multivariate pseudo-division is as efficient as exact division.

I But heaps reduce opportunity for parallelism.

Conclusion

Distributed can be faster than recursive.
But packing monomials is necessary.
Heaps are good!

I Heaps get us #C ∈ O(nm log min(m, n)) worst case
complexity. Optimal?

I Coefficient arithmetic can be done in-place.
No garbage!

I Size(heap) ∈ O(min(m, n)) =⇒ heap fits in cache.

I Multivariate pseudo-division is as efficient as exact division.

I But heaps reduce opportunity for parallelism.

Conclusion

Distributed can be faster than recursive.
But packing monomials is necessary.
Heaps are good!

I Heaps get us #C ∈ O(nm log min(m, n)) worst case
complexity. Optimal?

I Coefficient arithmetic can be done in-place.
No garbage!

I Size(heap) ∈ O(min(m, n)) =⇒ heap fits in cache.

I Multivariate pseudo-division is as efficient as exact division.

I But heaps reduce opportunity for parallelism.

Conclusion

Distributed can be faster than recursive.
But packing monomials is necessary.
Heaps are good!

I Heaps get us #C ∈ O(nm log min(m, n)) worst case
complexity. Optimal?

I Coefficient arithmetic can be done in-place.
No garbage!

I Size(heap) ∈ O(min(m, n)) =⇒ heap fits in cache.

I Multivariate pseudo-division is as efficient as exact division.

I But heaps reduce opportunity for parallelism.

Conclusion

Distributed can be faster than recursive.
But packing monomials is necessary.
Heaps are good!

I Heaps get us #C ∈ O(nm log min(m, n)) worst case
complexity. Optimal?

I Coefficient arithmetic can be done in-place.
No garbage!

I Size(heap) ∈ O(min(m, n)) =⇒ heap fits in cache.

I Multivariate pseudo-division is as efficient as exact division.

I But heaps reduce opportunity for parallelism.

Conclusion

Distributed can be faster than recursive.
But packing monomials is necessary.
Heaps are good!

I Heaps get us #C ∈ O(nm log min(m, n)) worst case
complexity. Optimal?

I Coefficient arithmetic can be done in-place.
No garbage!

I Size(heap) ∈ O(min(m, n)) =⇒ heap fits in cache.

I Multivariate pseudo-division is as efficient as exact division.

I But heaps reduce opportunity for parallelism.

The heap extract operation.

Algorithm 1: extract costs 2 log n − O(1) comparisons on average.

remove 10

10

89

3 5 4

8

3 5 4

9

8

4

9

2 2 3

5

2

Heapsort is 2n log n − O(n) average

Quicksort is 2n log n + O(n) average

Mergesort is n log n − n + 1 worst case

The heap extract operation.

Algorithm 1: extract costs 2 log n − O(1) comparisons on average.

remove 10

10

89

3 5 4

8

3 5 4

9

8

4

9

2 2 3

5

2

Heapsort is 2n log n − O(n) average

Quicksort is 2n log n + O(n) average

Mergesort is n log n − n + 1 worst case

The heap extract operation.
Algorithm 2: extract costs log n − O(1) comparisons on average.

remove 10

insert 2

10

89

3 5 4

8

3 4

9

5 8

3 4

9

8

3 5 4

9

8

3 4

9

5

2 2 2

5

2 2

Heapsort is n log n + O(n) average

The heap and the cache.

So which heap extract algorithm is best?

It depends!

For one word monomials stored immediately in the heap,
Algorithm 1 with 2 log n − O(1) comparisons is faster.

For multi-word monomials pointed to in the heap,
Algorithm 2 with log n + O(1) comparisons is faster.

The difference in speed ranged from 0% to 23%.

The heap and the cache.

So which heap extract algorithm is best? It depends!

For one word monomials stored immediately in the heap,
Algorithm 1 with 2 log n − O(1) comparisons is faster.

For multi-word monomials pointed to in the heap,
Algorithm 2 with log n + O(1) comparisons is faster.

The difference in speed ranged from 0% to 23%.

The heap and the cache.

So which heap extract algorithm is best? It depends!

For one word monomials stored immediately in the heap,
Algorithm 1 with 2 log n − O(1) comparisons is faster.

For multi-word monomials pointed to in the heap,
Algorithm 2 with log n + O(1) comparisons is faster.

The difference in speed ranged from 0% to 23%.

The heap and the cache.

So which heap extract algorithm is best? It depends!

For one word monomials stored immediately in the heap,
Algorithm 1 with 2 log n − O(1) comparisons is faster.

For multi-word monomials pointed to in the heap,
Algorithm 2 with log n + O(1) comparisons is faster.

The difference in speed ranged from 0% to 23%.

