
GIDL User Guide

Cosmin Oancea and Stephen M. Watt

Ontario Research Centre for Computer Algebra
Department of Computer Science

University of Western Ontario
London Ontario, Canada N6A 5B7

Abstract. This document presents the Generic Interface Definition Lan-
guage framework (gidl), an extension of corba-idl with support for
parametric polymorphism and (operator) overloading. The motivation
for this work is two-fold. First, we aimed at allowing multi-language
software modules to be combined together to construct distributed ap-
plications. In this direction we have investigated what should be the
attributes of a common model for parametric polymorphism, so that it
can satisfy a wide range of language requirements for specific semantics
and binding times. The current version of gidl provides bindings for a
set of representative languages: Java, C++ and Aldor. Second, we aimed
at allowing language facilities to be used transparently in a heteroge-
neous environment. In this direction we have translated part of the C++

Standard Template Library (stl) to a distributed environment, and in-
vestigated how to extend the gidl language bindings in order to preserve
the library semantics and its coding idioms.
This document is structured as follows: Section 1 enumerates several
articles related to the gidl framework. Section 2 briefly presents the
common object request broker architecture (corba), on top of which
gidl is implemented. Section 3 describes gidl’s semantics and the gidl
to idl translation. Section 4 introduces the general architecture of the
gidl base application, and the high level ideas used in the mapping gidl
generic model to the target languages. Sections 5 and 6 describes the
gidl bindings for the C++ and Java languages. Section 7 describes step
by step how to install the gidl framework, while Section 8 demonstrates
the use of the framework.

1 Documentation

There are several articles that relate to the gidl framework. The most relevant
one is “Parametric Polymorphism for Software Component Architectures”, by
Oancea and Watt [6], that introduces the semantics of the generic model pro-
posed by gidl, presents the high-level architecture of the gidl base application
and outlines the main ideas employed in generating the C++, Java and Aldor
language bindings.

The paper “Generic Library Extension in a Heterogeneous Environment”,
by Oancea and Watt [7], explores the question of how to structure the gidl
C++ language bindings to achieve two high-level goals: The first goal is to design
an extension framework as a component that can easily be plugged-in on top
of different underlying architectures, and together with other extensions. The
second goal is to use gidl as a vechicle to export generic libraries to a distributed
environment. We address two questions: to what degree can gidl render the
native library interface and semantics, and what are the techniques that will
preserve the library coding idioms? In these contexts, the paper identifies the
language mechanisms and programming techniques that foster a better code
structure in terms of interface clarity, type safety, ease of use, and performance.

Another related paper [2] describes earlier results and synthesize experiments
of supporting parametric polymorphism across language boundaries.

All these documents can be found in the Doc/RelevantArticles folder.

2 Common Object Requests Broker Architecture

The Object Management Group (OMG) is a non-profit organization that pro-
motes the use of component technology in heterogeneous, distributed computing
systems. OMG pursues this goal through developing standards which allow the
distributed object oriented applications to be portable and to interoperate.

The Common Object Request Broker (CORBA) [12] is an OMG open stan-
dard, which defines an implementation independent architecture for building and
seamlessly interconnecting multiple systems involving distributed objects, in a
way transparent for the user. In practice, CORBA applications may have some
vendor dependency.

CORBA applications are composed of objects, individual units of running
software that combine functionality and data. Their design is based on the
OMG Object Model. The OMG Object Model defines common object seman-
tics for specifying the externally visible characteristics of objects in a standard
and implementation-independent way. In this model clients request services from
objects (which will also be called servers) through a well-defined interface. This
interface is specified in OMG IDL (Interface Definition Language) [11].

This allows the framework to be platform and language independent, in the
sense that the client interfaces (to the objects), and the server implementations
(of these object interfaces) can be specified in any programming language. A
client accesses an object by issuing a request to the object. The request is an
event, and it carries information including an operation, the object reference of
the service provider, and actual parameters (if any). The object reference is an
object name that defines an object reliably.

The remaining of this section briefly presents the IDL language (Section 2.1),
and succinctly describes the components of the CORBA architecture (Section
2.2).

2.1 Interface Definition Language (IDL)

In order to achieve interoperability and portability, the CORBA standard re-
quires the use of the IDL to describe the interfaces of remote objects. The in-
terface is the syntax form of the promise the server object makes to the clients
invoking it. This fixes the operations that will be performed and the parame-
ters (input and output) for each. The IDL interface definition is independent
of the programming language used for implementation, OMG having standard-
ized mappings to popular programming languages like: C, C++, Java, COBOL,
Smalltalk, Ada, Lisp, Python[11].

IDL is a declarative language whose syntax was constructed from a sub-
set of C++ and Pascal instructions. It defines basic types (short, byte, float,
double, string, etc.), structured types (struct, sequence, array, module),
and provides signatures for interface types, fully specifying each operation’s
parameters. Multiple inheritance among interfaces is supported, but recently
adopted features like function/operator overloading, and parametric polymor-
phism are not. However, since it targets distributed objects, IDL forces the user

module Examples {

interface Transaction {

// ...

}

interface BankServer {

boolean verifyPIN(in long acctNo, in long pin);

void getAcctSpecifics(in long acctNo, in string customerName,

out double balance, out boolean isChecking);

boolean processTransaction(in Transaction t, in long acctNo);

}

}

Fig. 1. A simple IDL specification for a bank server application

to specify additional information with respect to the object interface, such as
which method arguments are input-only, output-only, or two-way data transfers.
This is achieved using additional keywords on method arguments, before their
type specifications: in, out, and inout.

The remainder of this subsection presents an example of an IDL specification
together with a C++ server implementation, and a Java client that accesses the
server functionality. The reasons are twofold: First, we want to convey to the
reader the “look and feel” of creating a multi-language application in an exist-
ing software component architecture (SCA). We are using CORBA in this case
but the process is quite similar for DCOM, while for .NET it is even simpler
(as it does not support “remote” objects). Second, and most importantly, we
want the reader to “feel” the difference between a SCA and a foreign function
interface. The latter usually leads to difficult and complex applications, as the
programming style specific to a given language is disrupted by numerous calls to
“special” kernel functions. It also leads to a rather un-safe program, as very little
from what is “foreign” can be statically type-checked. We hope that our example
shows that the SCAs are relatively easy to use, and safe, as they usually enforce
statical type-checking of the foreign calls. Moreover, they are a better solution
to the multi-language interoperability problem: in order to accommodate n lan-
guages, a usual SCA (one that uses an IL) would require O(n) translators, while
a solution based on foreign function interfaces would require O(n2) interfaces.

Figure 1 shows an IDL interface for a simplified bank account server. Accord-
ing to the specification, a BankServer object has three methods: one to verify a
PIN number against an account, one to get specifics about an account, and one
to process a transaction against an account.

In the BankServer interface, the two arguments to the verifyPIN method are
declared as in parameters, since they are only used as input to the method and
don’t need to be read back when the method returns. The getAcctSpecifics
method has two in parameters and two out parameters. The two out arguments
are read back from the server when the method returns as output values. An

class BankServer_Impl : public virtual POA_Example::BankServer,

public virtual ::PortableServer::RefCountServantBase {

private:

int* pin_arr; int* balance_arr; int* account_nr_arr;

int findAccountIndex(int acctNo) { /* ... */ }

public:

BankServer_Impl(int* pin, int* bal, int* acctNo) { /* ... */ }

virtual CORBA::Boolean verifyPIN(int acctNo, int pin)

throw(CORBA::SystemException) {

int index = findAccountIndex(acctNo);

return (pin == pin_arr[index])? 1 : 0;

}

// ... further implementation

};

Fig. 2. Part of the C++ implementation of the BankServer

inout argument is both fed to the method as an input parameter, and read
back when the method returns as an output value [3]. When the IDL interface
is compiled into a client stub and a server skeleton, the input/output specifiers
on method arguments are used to generate the code to marshal and unmarshal
the method arguments correctly.

Figure 2 presents part of the C++ server that implements the BankServer
interface. On line 1, our implementation (BankServer Impl) inherits from the
IDL skeleton class POA Example::BankServer that has been automatically gen-
erated when the IDL specification in Figure 1 was compiled. Thus, it is “linked”
to the CORBA framework. Note that the programmer’s job is fairly simple, the
code being very close to the one written for a single-space, C++ implementation
of the bank server.

Figure 3 shows a Java client that uses the functionality of the C++ bank
server implemented in Figure 2. The client assumes that the BankServerObj.ior
file contains a string representation of the bank server object (line 6), together
with type information and whatever is required to access the remote reference
(machine address and port number). This string is parsed and a remote object
interfacing to the server is created on line 12. On line 16 the object is “coerced”
to its proper type (serv is of type BankServer). Finally, the server serv can be
used as if it is local and it is implemented in Java. Lines 22 and 23 present the
execution of two remote operation. Our bank server is required to verify a pin
number against an account, and if proved valid, to perform a transaction.

static int run(org.omg.CORBA.ORB orb)

throws org.omg.CORBA.UserException {

org.omg.CORBA.Object obj = null;

try {

String refFile = "BankServerObj.ior";

java.io.BufferedReader in =

new java.io.BufferedReader(new java.io.FileReader(refFile));

String ref = in.readLine();

obj = orb.string_to_object(ref);

}catch(java.io.IOException ex) { return -1; }

Examples.BankServer serv = Examples.BankServerHelper.narrow(obj);

Example.Transaction trans = ...; //create a transaction object

int acctNo = 1211356256;

int pin = 2145;

if(serv.verifyPIN(acctNo, pin))

serv.processTransaction(trans, acctNo);

}

Fig. 3. A simple Java client using the bank server

2.2 Overview of CORBA Architectural Components

This section follows the “A Brief Tutorial in CORBA” work of Kate Keahey [5].
Figure 4 shows the main components of the ORB architecture and their inter-
connections.

The central component of CORBA is the Object Request Broker (ORB). The
ORB is the middleware that establishes the client-server relationships between
objects. It encompasses all of the communication infrastructure needed to iden-
tify and locate objects, handle connection management and deliver data. Using
an ORB, a client can transparently invoke a method on a server object, which
can be on the same machine or across a network. The ORB intercepts the call
and is responsible for finding an object that can implement the request, pass it
the parameters, invoke its method, and return the results.

It is important to emphasize that both the client and the server of CORBA
objects use an ORB to talk to each other (they both have an object manager
associated with them), and this leads to the fact that any agent in a CORBA
system may act as both a client and a server of remote objects. In general,
the ORB is not required to be a single component; it is simply defined by its
interfaces (see ORB interface in Figure 4). The ORB Core is the most important
part of the ORB as it handles the communication of requests.

On the client side of an object request, the ORB is responsible for accepting
client requests for a remote object, finding the implementation of the object in
the distributed system, accepting a client-side reference to the remote object,

Fig. 4. Main components of the CORBA architecture

routing client method calls through the object reference to the remote object
implementation, and accepting any results for the client. On the server side,
the ORB lets object servers register new objects. When a client requests an
object, the server ORB receives the request from the client ORB, and uses the
object’s skeleton interface to invoke the object’s activation method. The server
ORB generates an object reference for the new object, and sends this reference
back to the client. The client ORB converts the reference into a language-specific
form (a Java stub object, in our case), and the client uses this reference to invoke
methods on the remote object. When the client invokes a method on a remote
object, the server ORB receives the request and calls the method on the object
implementation through its skeleton interface. Any return values are marshaled
by the server ORB and sent back to the client ORB, where they are unmarshaled
and delivered to the client program. So ORBs really provide the backbone of the
CORBA distributed object system.

Given an IDL specification, the IDL compiler will generate IDL stub/skeleton
code (not presented in Figure 4). The stub will act as an interface for the remote

object while the skeleton will provide the implementation. To perform a remote
operation, the client transfers a request to the ORB Core via the IDL stub or
through the Dynamic Invocation Interface (DII). The IDL stub represents the
mapping between the implementation language of the client and the ORB core.
It follows that the client can be written in any language as long as the imple-
mentation of the ORB supports this mapping. The ORB Core then transfers the
request to the object implementation which receives the request as an up-call
through either an IDL skeleton, or a dynamic skeleton [5].

The Object Adapter (OA) is the architectural component responsible for the
communication between the object implementation and the ORB core. It han-
dles services such as generation and interpretation of object references, method
invocation, security of interactions, object and implementation activation and
deactivation, mapping references corresponding to object implementations and
registration of implementations. POA is one of the CORBA standard object adap-
tors (see Figure 2, line 1).

There are two ways to specify the object interfaces: through an IDL specifi-
cation, or by directly adding them to the Interface Repository (IR) – a database
which provides persistent storage of object interface definitions. The Dynamic
Invocation Interface (DII) enriches the CORBA object with reflective features: it
allows the client to specify requests to objects whose definition and interface are
unknown at the client’s compile time. To use DII, the client composes a request
(in a standard way to all ORBs) that contains the object reference, the name
of the operation to be invoked, and a list of parameters. The object services are
retrieved from the IR and the proper operation is invoked.

3 Generic Interface Definition Language

We have briefly reviewed in the previous section the corba-idl language. This
chapter presents the syntax and semantics of Generic Interface Definition Lan-
guage (gidl), our extension to corba–idl that supports parametric polymor-
phism, and method/operator overloading.

We emphasize that gidl is not a compliant omg–corba extension; for exam-
ple we have not as yet modified the corba interface repository to handle generic
types. We have focused on adding parametric polymorphism at the static idl
level of corba so the ideas involved in our design can be applied in a straight-
forward manner to extend other software component architectures. Reflective
features and type repositories are architecture specific and thus not the subject
our work. However, these type (interface) repositories mirror the idl specifica-
tion and therefore similar ideas can be employed to enhance them with support
for parametric polymorphism.

3.1 Rationale of the Design

We summarize the main principles that guided the design of our gidl extension.
We required that the gidl’s model for generics should:

– be “general” enough to allow a similar extension for various scas, and pre-
serve the backward compatibility with non-generic applications

– have the property that the type of an expression be context independent (i.e.
be determined solely by the type of its constituents),

– be powerful enough to make specifications written in gidl clear, precise and
easily extensible, allowing qualifications to be placed on generic types,

– allow mappings to languages supporting parametric polymorphism in a nat-
ural way, within a small overhead cost.

In the light of the above assumptions we constructed a generic model for gidl
in some ways similar to that of Java and GJ [15]. We are using a homogeneous
implementation approach, based on a type erasure technique which ensures the
backward compatibility with the non-generic applications written for the un-
derlying SCA. Briefly, the gidl compiler generates an idl specification file by
erasing the generic type information, and generates wrapper code in the desired
programming language (C++, Java, Aldor) to retrieve the erased information.

3.2 The GIDL Parametric Polymorphism Semantics

gidl defines a generalized model of parametric polymorphism that allows us
to support a range of languages through various mappings. One consequence is
that gidl is neutral to whether the type parameters are created statically or
dynamically; this depends on the targeted language. From a type-system point
of view, gidl supports F-bounded quantifications [1] based on named and struc-
tural subtyping. Type variables can be restricted to explicitly extend a given

interface, or to implicitly implement all the functionality (methods) of a given
interface. The latter addresses the code extensibility and re-usability issue, al-
lowing the programmer to design a clean and precise specification, and to avoid
unnatural inheritance relations between interfaces. (This is useful, for example,
in rendering the correct semantics of orthogonal-based libraries as the C++ stl.)
Furthermore, there are languages like Aldor that can allow type variables to be
bounded simply by a list of exports, without demanding a subclassing relation-
ship: f(A:with{op:(SI)->SI},a:A): SI ==...;.

The following example introduces the varieties of parametric polymorphism
supported by gidl. Suppose we want to write a very simple gidl interface de-
scribing a priority queue, as in Figure 5.

The interface PriorQueue1 specifies a priority queue of objects whose types
have to be the PriorElem interface or to explicitly extend it (be a subtype
of it). We call this an extension-based qualification. A type instantiation of an
extension-based qualified generic type will be validated by the compiler only if it
actually inherits from the qualifier, in our case PriorElem.

The PriorQueue2 interface accepts as valid candidates for the generic type
all the interfaces that implicitly, fully implement all the operations present in
the definition of the PriorElem interface. We call this an export-based qualifi-
cation. Note that this definition requires exact matching of method signatures,
and does not accommodate functional subtyping (contravariant parameter types,
covariant return type).

To illustrate, at line 33 in our example, the type checker will accept the
Test<Foo extend, Foo export> scoped-name, because the interface Foo extend
inherits from PriorElem, and the Foo export interface implements the whole
functionality of the PriorElem interface. Line 34 will generate a type error since
Foo export does not inherit from PriorElem, and therefore violates the exten-
sion based qualification of the A: PriorElem generic type.

A type instantiation of an export-based qualified generic type is valid only if it
is found to implement the whole qualifier’s functionality. In this example, a call
such as PriorQueue2<Interf> is valid only if Interf contains the operations:

short getPriority()
short compareTo(in Object r)

This check is not trivial, as shown below:

interface Elem {
Elem op(in string str, in Object o);

};
interface TElem<A, B> {

A op(in B b, in Object o);
};
interface Test<A:-Elem>{ };

module GenericStructures {

interface PriorElem {

short getPriority();

short compareTo(in Object r);

};

interface Foo_extend : PriorElem { /* */ };

// Assume Foo_export is not in a "isA" logical relation with

// PriorElem so we did not want to inherit from it

interface Foo_export{

short getPriority();

short compareTo(in Object r);

//...

};

interface PriorQueue1<A: PriorElem> {

void enqueue(in A a);

A dequeue();

boolean empty();

short size();

};

interface PriorQueue2<A:-PriorElem> {

void enqueue(in A a);

A dequeue();

boolean empty();

short size();

};

interface Test<A: PriorElem, B:- PriorElem>{

Test<Foo_extend, Foo_export> op1(); // OK

Test<Foo_export, Foo_export> op2(); // ERROR

Test<Foo_extend, Foo_extend> op2(); // OK

};

// ...

};

Fig. 5. Generic interfaces with different generic type qualifications

Both Elem and TElem<Elem, string> are valid candidates for the generic type
A in the definition of the Test interface, but this is not true for TElem<Object,
string> for example, because Object is not a subtype of Elem and op is required
to return an Elem.

gidl also supports a unqualified or universally qualified generic types, similar
to templates in C++ (e.g. PriorityQueue3<A>). This allows the instantiation
to be any gidl type.

gidl does not support type parameterized methods, even if this fea-
ture is common to all three mapped languages (e.g. as inner template function).
The gidl-level type checking and the language bindings necessary to implement
this feature are similar to those for parametric polymorphism at the interface
type level. However, a delicate problem arises when ensuring the correct invoca-
tion of such a method. Due to their static implementation of parametric polymor-
phism, both C++ and Java expect the method-level generics to be instantiated
at the call site. In our case, the code is split between the caller and callee and
separately compiled, thus the server has no way of knowing the type parameter
instantiations. To handle this, one could pass extra reflective-parameters that en-
capsulate the type-information of the generic type instantiations. The server-side
would then generate code for a small method, which invokes the parameterized
method on properly instantiated type-parameters, just-in-time compiles it and
links it to the application. The generated method could be finally called to com-
plete the original invocation. The generated methods corresponding to different
instantiations of the exposed type parameters could be cached for later reuse.
However, we have not implemented this mechanism.

3.3 IDL Grammar Changes to support generic types

To provide syntax for parametric forms, we have modified the omg idl grammar
as shown in Figure 6. The <template dcl unit> product is form by an identifier
followed, optionally by an extend/export qualification. The latter comprises one
of the :/:- symbols followed by a <scoped name> product.

The <template call unit> product is satisfied by any type (<integer type>,
<char type>, <value based type>, <scoped name>, and so on).

The <template dcl>/<template call> are sequences of comma separated
<template dcl unit>/<template call unit>.

To extend idl with parametric polymorphism we have modified the deriva-
tion rule for the scoped name product. The new rule is satisfied by
::Outer<T1,Object>::Inner<T2, String>, for example.

Furthermore, we have modified the derivation rules for <interface header>
and <forward dcl> in order to allow the declaration of type-parameterized in-
terfaces.

To allow F-bounded polymorphism, the type checking phase first records in
the symbol table all the types introduced by a <template dcl> product, and
just then checks the validity of the qualifiers. Thus, expressions such as:
interface Test< A:Comparable, B:Comparable<A> > ...
are accepted by the GIDL language.

//...

<template_dcl> ::= <template_dcl_unit>

| <template_dcl> "," <template_dcl_unit>

;

<template_dcl_unit> ::= <identifier> [{":"|":-"}

<scoped_name>]

;

<template_call> ::= <template_call_unit>

| <template_call> "," <template_call_unit>

;

<template_call_unit> ::= <const_type>

;

<scoped_name> ::= ["::"] <identifier>

["<" <template_call> ">"]

| <scoped_name> "::" <identifier>

["<" <template_call> ">"]

;

<interface_header> ::= ["abstract"] "interface" <identifier>

["<" <template_dcl> ">"]

;

<forward_dcl> ::= ["abstract"] "interface" <identifier>

["<" <template_dcl> ">"]

;

//...

Fig. 6. Adding support for parameterized interfaces to the idl grammar

3.4 More semantics for the GIDL generic types

We discuss a few details, with examples referring to the gidl specification in Fig-
ure 7. We define the visibility scope of a generic type parameter to be throughout
the interface in which it is defined. Following the same approach as in Generic
Java [10, 15], we consider the subtyping to be invariant for parameterized types.
For example, even if Elem is a subtype of Object, Comp<Elem> is not a subtype
of Comp<Object>. In Figure 7, the type-checking of the
Comparator<Comp, Comp<A>> type (with mutual-recursive bounds) shall
fail. This is because Comp should extend Comp<Comp<A>> and, since the
subtyping is invariant for parameterized types, this implies that B and Comp<A>
are precisely the same type, which is not true. Using a similar reasoning, one
will find that the Comparator<Double, Float> type is well-formed. Since the
export-based qualification can be reduced to an extend-based qualification at gidl
level, the type checking mechanism in this case will be similar to the one pre-
sented above.

interface Base<C> {

typedef struct BaseStruct {

Base<C> field;

};

};

interface Comp<A> : Base<A>{

void op1(in BaseStruct s);

};

interface Double : Comp<Float> {...};

interface Float : Comp<Double> {...};

interface Comparator<A : Comp, B : Comp<A> > {

Base::BaseStruct op2();

Comparator<Comp, Comp<A> > op3(); // ERROR

Comparator<Double, Float> op4(); // OK

};

Fig. 7. Scopes and type-checking

We turn now to the validity of the op1/op2 operations of the Comp/Comparator
interfaces. The op1 method takes a parameter of type BaseStruct. The latter
makes use of the generic type C and is defined inside the Base interface, which is a
superclass of Comp. It follows that BaseStruct is also in the scope of Comp, its sig-
nature in this context, determined by traversing up the inheritance tree of Comp,
being Base<A>::BaseStruct. In the case of the op2 method, all the information
is stored inside the scoped name of the returned type: Base::BaseStruct.

We should note that in the Comp interface, the first appearance of A is re-
lated to a template dcl production in the grammar, while the second one is
related to a template call (now A is a scoped name, which was defined in the
template dcl part). The op1 operation takes as parameter a BaseStruct vari-
able. The Comp interface extends the Base interface, and BaseStruct is defined
inside the Base interface. Thus, BaseStruct is also in the scope of the Comp
interface, so that the op1 declaration is valid. Notice that BaseStruct makes
use of a generic type (i.e. C) defined within the Base interface. The signature
of the op1 function is dependent on the signature of the BaseStruct structure,
whose exact syntax in this context is: Base<A>::BaseStruct (notice that A is
a generic type and when the operation is invoked, it has to be substituted for
a real type). The mapping to C++ and Java languages have to ensure op1/op2
invocation consistency at client level. Thus, we see that the BaseStruct - type
is dependent on the type of the generic type in the Base interface, and this
information cannot be encapsulated at the symbol table level. Instead we need
to attach to each scoped name a template activation record (containing infor-
mation about the generic type context in which it appears). In the case of the

BaseStruct appearing in the op1 operation of the Comp interface, the template
activation record is filled with information by up traversing the inheritance tree
of the Comp interface, until we find the actual definition of BaseStruct. In the
case of the op2 operation appearing in the Comp interface, all the information is
stored inside the scoped name of the type (Base::BaseStruct).

We explicitly note that the extension-based qualification is stronger that the
export-based qualification. For example, the gidl specification below should gen-
erate a compile error.

interface Test0<C:Type1> { ... };
interface Test1<A:-Type1> : Test0<A> { ... };

This is because the type variable A in the Test1<A> scoped name is not
required to extend Type1, as requested by the Test0 definition, but only to
implicitly implement its functionality.

3.5 Well-Formedness Type Rules

This section discusses the issues that arise from the combination of both named
and structural subtyping in the definition of the qualification semantics. Figure 8
shows some of the type rules for well-formedness and subtyping in the presence
of qualified type variables. We do not discuss the unqualified generic type, as its
formal integration does not pose any challenges.

In this discussion, the metavariable X ranges over type variables; T , R and
P range over types; N and O range over types other than type variables (non-
variable types). I and m range over interface and method names respectively,
while M ranges over method signatures. We write X as a shorthand for X1,...,Xn

and X/̄N as a shorthand for X1/1N1, ..., Xn/nNn. The length of the sequence X
is #X and we assume that the sequences of type variables contain no duplicate
names. An interface table IT is a mapping from interface names to interface
declarations. A type environment ∆ is a finite mapping from type variables to
pairs of bounds and qualification relation, written X/̄N where /i is one of the
extend or export based qualifications. For brevity, some obvious rules are omitted
from Figure 8: A type variableX is well formed in the type context∆ if it belongs
to the domain of ∆. The type Object (the root of the idl inheritance hierarchy)
is well formed in any type context. Both subtyping relations are reflexive and
transitive. Also, a type variable belonging to a type context is known to be in
the corresponding subtyping relation with its bound.

The well-formedness rule in Figure 8 simply says that if the declaration of
interface I begins with interfaceI <X/̄N >, then a type I < T > is well formed
only if all the components of T are well formed and if, in addition, substituting
T for X respects the bounds N . Also, note that the simultaneous substitution
enables recursion and mutual recursion between variables and bounds [4]. The
named subtyping rule (“<:”) in Figure 8 is also straight forward: the inheritance
hierarchy is dictated by the interface table IT .

(Well-formed types “:” and “:-” qualifications)

IT (I) = interface I < X/̄N >: O{...} /i ∈ { : , : - }
∆ ` T ∆ ` Ti 5i [T/X]Ni ∀i ∈ {1, ..,#X}
where 5i = <: if /i = : and 5i = <: - if /i = : -

∆ ` I < T >

(Named subtyping “<:”)

IT (I) = interface I < X/̄ N >: O{...} /i ∈ { : , : - }
∆ ` I < T > <: [T/X]Oi ∀i ∈ {1, ..,#O}

(Structural subtyping “<:-”)

Methods(O1) = {M11, ..,M1k} Methods(O2) = {M21, ..,M2`}
where ` ≤ k ∆ ` O1 ∆ ` O2 ∆ `M2i �M1i ∀i ∈ {1, .., `}

∆ ` O1 <: - O2

(Method inclusion “�” – II)

M1 = R1 m(P1) M2 =< X/̄N > R2 m(P2) / ∈ {: , : -}
∃T ∆ ` T ∆ ` P1 = [T/X]P2 ∆ ` R1 = [T/X]R2

∆ `M1 � M2

(Method inclusion “�” – III)

M1 =< X1/̄1N1 > R1 m(P1) M2 =< X2/̄2N2 > R2 m(P2)

∆ ` P1 = [X1/X2]P2 ∆ ` R1 = [X1/X2]R2

/1, /2 ∈ { : , : - } ∆ ` N1 ψ(/̄1, /̄2) [X1/X2]N2

∆ `M1 � M2

ψ(/1, /2) =

/1 = /2 = : then :
/1 = /2 = : - then : -
/1 = : and /2 = : - then : -
/1 = : - and /2 = : then η where
O1ηO2 = true if {I|I <: -O1} ⊆ {I|I <: O2},
and false otherwise

Fig. 8. Type rules for two varieties of qualification

Intuitively, the type-rule for structural subtyping (“<:-”) says that O1 is a
structural subtype of O2 if “it exports all the methods” of O2. (idl attributes
are seen as a pair of methods: a getter and a setter). Note that O1 and O2 are
instantiated types, in a given type context ∆. To formalize this property we
introduced the inclusion relation (“�”) between methods. If M1 and M2 are
not type parameterized then M1 �M2 if the method names and signatures are
identical. It follows in this case that also M2 �M1.

Type-parameterized functions can be viewed as a set of functions: one for
each different instantiation of their generic types. If M2 is type parameterized
(X / N), but M1 is not, then M1 � M2 if the method names are identical and
there exist a set of well-formed types T such that the substitution/instantiation
[T/X] applied on M2 yields a signature identical with that of M1. The last
case is when both M1 and M2 are type parameterized. Let us assume only one
type parameter for M1 and M2: X1 and X2 respectively. (The generalization is
straight forward.) In order to have M1 �M2 we need to have that the set of valid
instantiation for X1 is included in the set of valid instantiations for X2. Assume
an extend-based qualification X1 : O1 for X1 and an export-based qualification
X2 : -O2 for X2. The set of interfaces that extend O1 should be included in the
set of interfaces that implement O2 and the necessary and sufficient condition
is O1 : -O2. A similar line of reasoning leads to the definition of the ψ operator
in Figure 8. The last case leads to an overly technical result, which requires the
type-checker to work hard. We prefer the more elegant alternative that excludes
this case: if X1 : -O1 and X2 : O2 then M1 is not �-included in M2.

3.6 GIDL to IDL Transformation

The implementation of our generic model employs a type erasure mechanism,
based on the subtyping polymorphism supported by idl. This preserves the
interoperability between programs written over different implementations of the
same software component architecture and allows our model to be easily adapted
to enhance several software component architectures.

To achieve this, we constructed a translator from our gidl to omg idl,
accepting both regular idl and gidl specifications. When generating the idl
file, we first delete the generic type declarations from the gidl file (delete the
template dcl productions in the gidl grammar). Then the unqualified/export-
based qualified type variables are substituted by the any/Object idl type, while
the extend-based-qualified ones are substituted by the (type variable erased) in-
terface type they are supposed to extend. The result should be a valid omg idl
file, which can be compiled with a regular idl compiler.

It is obvious that during this transformation we are losing the generic type
information encapsulated in the gidl specification. We recover this information
by generating skeleton/stub wrapper classes in the target languages that make
use of the specific characteristics of the parametric polymorphism in these lan-
guages. If we run the gidl translator over the specification shown in Figure 5,
it will generate the idl specification in Figure 9.

module GenericStructures{

// ...

interface PriorElem{

short getPriority();

short compareTo(in Object r);

};

interface PriorQueue1{

void enqueue(in PriorElem a);

PriorElem dequeue();

boolean empty();

short size();

};

interface PriorQueue2{

void enqueue(in Object a);

Object dequeue();

boolean empty();

short size();

}; // ...

};

Fig. 9. The generated idl specification

We previously noted that, at least for the un-qualified type variables, any
corba-IDL’s type can be a candidate for the generic type substitution, and this
includes basic types. There are some programming languages (GJ, Modula3),
that do require the generic parameters to be classes/interfaces or both. For this
reason, we decided to map the GIDL’s basic types into some wrapper classes at
the stub level (mapped programming language dependent) that would look like
the following if they had a GIDL representation:

interface GIDL_Double{

double getID();

double getValue();

double setValue(in double d);

};

3.7 Extending IDL with Operator/Method Overloading

Method Overloading
It was trivial to extend gidl with method overloading. The compiler checks

the names of all the operations exported by a certain interface. If it finds name-
duplicates of methods with different signatures, it generates unique names for
the corresponding methods. The idl erased file uses these unique names. The
targeted languages, C++, Java, Aldor, all support method overloading. Thus the
gidl wrapper will export the method names that appear in the gidl specifica-

// GIDL specification

interface Overloading<T> {

long fun(in T t);

long fun(in T t, in long l);

};

// The corresponding IDL erased file generated by the compiler

// for the above GIDL specification

interface Overloading {

long fun1(in Any t);

long fun2(in Any t, in long l);

};

// C++ wrapper pseudocode for the Overloading interface

GIDL::Long fun(T t) {

/*...*/

CORBA::Long l = obj->fun1(T::_any_narrow(t));

/*...*/

}

GIDL::Long fun(T t, GIDL::Long l) {

/*...*/

CORBA::Long l = obj->fun2(T::_any_narrow(t), GIDL::Long::narrow(l));

/*...*/

}

Fig. 10. Adding support for method overloading

tion, but its implementation will call the corresponding corba operation that
has an unique name. Figure 10 exemplifies this approach.

Operator Overloading

Currently the set of operators supported by gidl are the one of C++, except-
ing the = operator:
"->*", "<<=", ">>=", "+=", "++@p", "++@a", "->", "--@p", "--@a", "-=",
"*=", ""̄, "==", "<=", "<<", ">=", ">>", "%=", "&&", "&=", "=̂", "!=",
"||", "|=", "[]", "()", "+@u", "+@b", "-@u", "-@b", "*@u", "*@u", "*@b",
"/", "<", ">", "%", "&@u", "&@b", ""̂, "!", " ", "|", ",".
The symbol @ is used to specify additional information about the operator, such
as if it is binary or unary. b stands for binary operator, u stands for unary opera-
tor, p stands for prefix operator, a stands for postfix operator. Note that the user
does not have to write this abreviatons, since the compiler can infer whether the
operator is unary, binary, tertiary or multi, from the number of arguments the
operator receives. However, if the user does not specify whether the operator is
a prefix/postfix one, for example in the case of ++ or --, the compiler will chose
by default the prefix form.

//...

<id_or_op> ::= IDENTIFIER:id | IDENTIFIER_OP:id

;

<ops_overl_metadata> ::=

"Java" | "Cpp" | "Aldor" ":" <id_or_op>

|

"Java" | "Cpp" | "Aldor" ":" <id_or_op> ";" <ops_overl_metadata>

;

<method_name> ::=

IDENTIFIER

|

IDENTIFIER_OP ["{" <ops_overl_metadata> "}"]

;

//...

Fig. 11. Adding support for operator overloading to the idl grammar

However, not all the languages support operator overloading (e.g. Java), and
the ones that suport this feature do not necessarily export the same set of op-
erators. Our goal was for gidl to implement a flexible extension mechanism for
operator overloading. The compiler has a list of default names that it is going
to use to replace the operator name in the gidl wrapper for each target lan-
guage. These names can be valid identifiers or operators for a certain language.
The user can provide a specification file that overrides the default names of the
compiler. Furthermore, we provide a mechanism that allows the programmer to
again override these names in the gidl specification, as below:

interface TestingOperators{

void operator"++@p"

{Java: pp_pref; Cpp: operator"++"; Aldor: operator"++@p"}

();

};

The ++ operator of the TestingOperators interface will be mapped to the
++ operator for the C++ and Aldor languages, while the Java wrapper stub will
replace it with a method called pp pref. Although not implemented, it shall be
a straight-forward extension for gidl to accept any conceivable operator, and
employ the code generation engine to decide whether that operator is legal for
a specific language binding or not. In the latter case, the compiler will map it
instead to a method whose name is a viable identifier for that language (in case
the user has not provided a name for it).

To accomodate operator overloading in the IDL grammer, we introduced a
new terminal, called OPERATOR ID that recognizes symbols of the form:
operator"<any>", where <any> can be any string that does not contain the
space, tab, or the end of line characters.

Figure 11 presents the changes we made to the idl grammer to support
operator overloading. <id or op> denotes either an identifier or an operator
identifier. The <ops overl metadata> is a sequence of pairs of one of the strings
"Java", "Cpp", or "Aldor" and a gidl identifier or operator. The method
name is an identifier or an operator, where the latter can be followed by an
<ops overl metadata> product.

Note that at the parser level, an operator name can be any string. It is the
type-checking job to decide whether the operator is supported by gidl or not.
This allows the set of supported operators to be extended in the compiler without
modifying the parser.

4 High-Level View of the GIDL Architecture

This chapter presents a high level view of the gidl architecture: that is how the
architecture components are created and how they interact to accomplish an in-
vocation successfully. It then shows how a programmer may use our architecture,
and argues the transparency of our design, in the sense that the programmer
need not know the internal architecture, but only the mapping rules from gidl
to a specific programming language.

4.1 The GIDL Extension Architecture

Figure 12 illustrates the design of the proposed architecture. The circles stand for
user’s code. The rectangular boxes represent components in the standard omg-
corba architecture. This includes the idl specification, the stub and skeleton,
and the object request broker (ORB). The hexagons represent the components
needed by our generic extension, including the gidl specification and generated
gidl wrappers. The dashed arrows represent the compiles to relation among
components. A gidl specification compiled with our gidl compiler will generate
an idl specification file, together with gidl wrapper stub and skeleton bindings,
which recover the lost generic type information.

The bottom part of the figure represents corba’s internals. When compiling
the idl file with any vendor’s idl compiler, client stubs and skeletons will be
generated and these serve as proxies for clients and servers respectively. Because
the idl defines interfaces so strictly, the stub on the client side will have no
trouble matching perfectly with the skeleton on the server side, even if the two
are compiled to different programming languages, or are running on different
ORBs from different vendors, under different operating systems or hardware [11].

The solid arrows in Figure 12 depict method invocation. In corba, every
object has its own unique object reference. The client must obtain an object’s
reference in a string representation. This is used by the ORB to identify the
exact instance that must be invoked. As far as the client is concerned, it invokes
a method on the object instance. However, it actually calls the idl stub that
acts as a proxy and forwards the invocation to the ORB. It is the ORB’s job to
find the server, to pass the parameters, make the invocation and eventually to
return a result to the client [11].

As stated previously, our generic extension for corba introduces an extra
level of indirection in the original mechanism; in order to recover the generic type
information lost by the gidl to idl transformation, stub and skeleton wrappers
are generated to match the original gidl specification. Basically, for every type
in our gidl specification, we construct C++/Java/Aldor wrapper stubs that ref-
erence the corba-stub objects generated by the idl compiler. When the client
invokes an operation, it actually calls a method on a gidl stub wrapper ob-
ject. The gidl method implementation retrieves the corba-objects hidden by
the wrapper-objects taken as parameters, invokes the method on the corba-
object’s stub hidden inside our wrapper class, gets the result, encloses it in
a newly formed wrapper if necessary and returns it to the client application.

GIDL

Specification Application
(C++/Java/Aldor)

Server

SkeletonIDLIDL Stub

IDL Specification

CORBA’s Object Request Broker (ORB)

−−> marshal the invocation to the skeleton

marshal the return to the stub <−−

Client
Application

(C++/Java/Aldor)

GIDL
method

invocation

marshal the
params

to the IDL
skeleton

call server

wrap params

un−wrap the

return

ORB
delegate the

to handle the

invocation

un−wrap params

method
call IDL

GIDL

Stub
Wrapper

delegate the ORB
to marshal
the returnserver invocation

return from

wrap the

result

return to the
GIDL stub

return to the

IDL skeleton proper GIDL

invoke the

method

GIDL
Wrapper

Skeleton

Fig. 12. gidl architecture for corba
circle – user code
hexagon – gidl component
rectangle – corba component
dashed arrow – is compiled to
solid arrow – method invocation flow

The wrapper skeleton functionality is the inverse of the client. The wrapper
skeleton method encapsulates the erased idl objects with generics erased as
gidl ones, adding back the generic type’s erased information. It invokes the
user-implemented server method with these parameters, retrieves the corba
idl-object or value from the returned object and passes it to the idl skeleton.

Clearly, for our implementation to be corba compliant, corba’s Interface
Repository (ir) model would have to be changed to handle parameterized inter-
faces. Two new ir–idl interfaces for TemplateDclUnit and TemplateCallUnit
extending the IRObject interface should be added to the ir meta model and
the InterfaceDef ir-idl interface should be modified to contain a sequence of
TemplateDclUnit and a list of TemplateCallUnit. The definition of ScopedName
would also have to be made to deal with templates. The TypeCodes and the
string representation of references would also be extended to contain parameter-
ized type information. However, our main goal has been to add genericity to the
idl - level, hence the above features are not implemented.

With minimal modifications to the wrapper code generation, our generic
extension architecture can sit on top of other software component architectures
such as dcom or jni. Targeting dcom is straight forward, as its design is similar
to corba.

Enhancing jni is more subtle: Given a gidl specification file, wrapper stubs
are generated on the C++ and Java sides. These make use of parametric poly-
morphism and will ensure that the gidl semantics are statically enforced in both
mappings, similar to our design for corba. What differs is the implementation
of the erased stub (IDL stub box in Figure 12). On the C++ side, this corresponds
to the mechanism provided by jni to invoke the jvm; it can be mangled inside
the wrapper classes and hidden from the user. To call Java code from C++, the
C++ parameterized wrapper classes use the jni mechanism to invoke, through
jvm, the parameterized Java wrapper classes. To call C++ from Java, the pa-
rameterized Java wrapper classes, containing only native methods, are compiled
(“javah” utility) and, as a result, the C++ generic erased stub is generated. The
latter re-directs the invocation to the parameterized wrapper class.

In summary, the generic extension for our corba case study can be applied
on top of any corba-vendor implementation, while maintaining backward com-
patibility with standard corba applications. Moreover, with minimal changes,
our architecture can be applied to various heterogeneous systems. Our approach
has been to design a general and clean extension architecture and then to apply
aggressive optimization techniques to reduce the overheads incurred by casting,
and the extra indirection in invocation. One can anticipate that a combination of
optimizations, including pointer aliasing, scalar replacement of aggregates, copy
propagation and dead code elimination, will achieve this in most cases.

4.2 The User’s Perspective

Consider the gidl specification shown in Figure 13. When implementing the
server side, the programmer should extend the generated skeleton wrapper classes
PriorQueue2 and PriorElem, implementing the operations that appear in the

interface PriorElem {

short getPriority();

short compareTo(in Object r);

};

interface PriorQueue2<A:-PriorElem> {

void enqueue(in A a);

A dequeue();

boolean empty();

short size();

A creatNewA(in short s);

};

Fig. 13. gidl code for a simple priority queue

CORBA::Object_var obj = orb->string_to_object(s);

GIDL::PriorQueue2<GIDL::PriorElem> gpq(pq_orig);

GIDL::PriorElem gPEobj = gpq.createNewA(GIDL::Short_GIDL(1));

gpq.enqueue(gPEobj); // OK

// Obtain a reference to a CORBA::Object - obj ...

gpq.enqueue(obj); // Error

GIDL::PriorElem gPEobj = gpq.dequeue();

GIDL::Short_GIDL sh = PEobj.getPriority();

cout<<sh<<endl; //prints "1"

Fig. 14. Code excerpt from a C++ client

gidl specification. This is the usual corba procedure for writing servers, so the
user will find no difficulty here.

An excerpt from a C++ client program that makes use of the types defined
in this gidl specification is shown in Figure 14. Suppose the server is repre-
sented by a GIDL::PriorQueue2<GIDL::PriorElem> object. The client obtains
a string representation of a reference to the generic type erased object, i.e.
::PriorQueue2 from the server (line 1). It creates a generic wrapper stub (line
2) together with an idl stub proxy. The latter is implemented inside the wrap-
per class constructor to hide the internal architectural design. From this point
on, the user can transparently invoke the server functionality (lines 5, 11, 12).
In Figure 14, GIDL::Short GIDL is the C++ mapping type for gidl’s short.
Line 9 generates a compile-type error, signaling the user that his code does
not obey the gidl specification semantics. If we look at the gidl specification

in Figure 13, the enqueue operation is supposed to take a parameter of type
A. In our case the parameter is substituted by GIDL::PriorElem, since we are
working with GIDL::PriorQueue2<GIDL::PriorElem>. Therefore the parame-
ter of the enqueue function is expected to be of type GIDL::PriorElem and not
CORBA::Object.

To conclude, our architecture places little burden on programmer’s shoulders,
as most of our implementation details are hidden. The steps in application design
are the same as those required for a standard corba application, but now the
implementation can use generic programming.

4.3 High level ideas for mapping qualified generic types

Our generic type mechanism unifies the semantics of parametric polymorphism
from different programming languages. In the implementation of our generic
model we do as much work as possible at the unified level and in the gidl to
idl translation, to minimize the language specific details.

Basic Ideas

Type-erasure for an extend-based qualified generic type is achieved by sub-
stituting it with its bounding-interface. The Java and Aldor mappings are quite
natural since this type of qualification is already supported. For the C++ lan-
guage, due to its static binding time, the mapping can be achieved simply by
casting an instance of the generic type to its corresponding qualifier. Note that
this code is never executed at run-time, as shown in line marked “//*” in Fig-
ure 15.

We show below that the export-based qualified generic type can be reduced
to an extend-based qualification relation at the gidl level. The idea here is to
find, for each export-based qualified generic type, all the possible interfaces that
may implement the functionality of the associated qualifier.

The next step is to construct an interface that:

– implements the whole functionality of the qualifier (for a proper instantiation
of its generic types, if any),

– becomes a natural parent for the interfaces identified in the previous step (in
the sense that the inheritance does not actually introduce new functionality),

– defines a minimal number of generic types

We call the constructed interface the most specific generic antiunifier (MSGA)
of the export-based qualification. The MSGA can be seen as the most specific
antiunifier [14] or equivalently the least general generalization [13] of the types
that satisfy the export-based qualifier.

Section 3.5 has already introduced and explained the gidl type rules related
to well-formedness and subtyping in the presence of qualified type variables.
Next we discuss the main stages involved in the MSGA construction and we

// GIDL specification:

interface Foo { /*...*/ };

interface Test<T1:Foo> { /*...*/ };

- -

// C++ mapping:

template<class T1> class Test :

virtual public ::GIDL::GIDL_Object {

private:

virtual void implTestFunction() {

if(1) return; //*

T1 a_T1; Foo a_Foo = (Foo)a_T1;

}

public:

Test(::Test_var ob) {

implTestFunction(); //...

}//...

}

Fig. 15. Extend-based qualification mapping to C++

present an example. This MSGA could be used as the erasure type for its corre-
sponding generic type. We have chosen not to do so, however, due to corba’s
IDL limitations and we use Object instead.

Mapping Export-Based Qualification

The algorithm for computing the MSGA associated with an export-based qual-
ification, presented here, works under the assumption that the extend-based qual-
ification has already been mapped to the target language. Each gidl-interface
that may satisfy the export-based qualification in certain circumstances (for a
given instantiation of the generic type for example), shall be made to imple-
ment the most specific generic antiunifier (MSGA) interface associated with
that export-based qualification.

As an example, consider the gidl file shown in Figure 16. The Test interface
uses an export-based qualified generic type. Among the valid candidates for the
type instantiation one can list Element, TemplEl1<tp0, tp1>, TemplEl2<tp0,
tp2, tp1>. Being given the methods in the Element interface and the set of
interfaces defined in a gidl specification, our task is to construct the most spe-
cific generic antiunifier (MSGA) of these candidates. First, we construct a new
parameterized interface, with as many generic types as the number of parame-

interface Element {

tp0 op(in tp1 a1, in tp2 a2, in tp0 a3,

in tp3 a4, in tp1 a5);

};

interface TemplEl1<T1, T2> {

T1 op(in T2 a1, in tp2 a2, in T1 a3,

in tp3 a4, in T2 a5);

};

interface TemplEl2<T1, T2, T3> {

T1 op(in tp1 a1, in T2 a2, in T1 a3,

in tp3 a4, in T3 a5);

};

interface Test<A:-Element> {

//use A

}

Fig. 16. MSGA Example

ters in all the methods of the “to be implemented” interface, plus the number of
methods, as the return types should also be taken into account. In our example,
the MSGA initially looks like:

interface MSGA<G0, G1, G2, G3, G4, G5> {

G0 op(in G1 a1, in G2 a2,

in G3 a3, in G4 a4, in G5 a5);

}

Left like this, the interface created can make use of many different generic
types, so we may want to simplify it. We create a matrix as below, in which the
types that have to match will share the same column. If there is an interface that
we can prove cannot implement the required functionality, it should not appear
in the matrix.

G0 G1 G2 G3 G4 G5 MSGA
tp0 tp1 tp2 tp0 tp3 tp1 Element
T1 T2 tp2 T1 tp3 T2 TemplEl1
T1 tp1 T2 T1 tp3 T3 TemplEl2

The first thing to do is to identify the columns formed by the same non-
generic type. This occurs in G4’s column in the above table. The next step is
to remove the corresponding generic type from the template declaration part
of the MSGA interface and substitute it with the non-generic type throughout
the MSGA’s interface definition. In our example this would be substituting tp3
for G4. A second simplification can be made if two columns are found to be

interface MSGA<G0, G1, G2, G5> {

G0 op(in G1 a1, in G2 a2,

in G0 a3, in tp3 a4, in G5 a5);

}

interface Element: MSGA<tp0,tp1,tp2,tp1> {...};

interface TemplEl1<T1, T2>: MSGA<T1,T2,tp2,T2> {...};

interface TemplEl2<T1, T2, T3>: MSGA<T1,tp1,T2,T3>{...};

interface Test<A : MSGA<tp0, tp1, tp2, tp1> >

{ //use A...};

Fig. 17. The result of the MSGA Algorithm

equal. This occurs with columns 0 and 3 of our example. In this case we can also
remove one of the generic types in the template declaration part of the MSGA
interface and substitute it with the other generic type throughout the interface
definition. Special care should be taken for the void return type, since it cannot
be matched by any generic type instantiation.

Finally, all the interfaces found to be valid candidates to instantiate the
export-based qualified generic type, are made to implement the simplified MSGA
interface, as shown in Figure 17.

It is clear that only Element, TemplEl1<tp0, tp1> and TemplEl2<tp0,
tp2, tp1> will not be signaled with a compiler error when substituted for the
generic type A in the Test generic interface. Notice also that the MSGA is using
only unqualified type parameters in order to cover all possible type instantiations
and that the generic type qualifications of the candidate interfaces (TemplEl1,
TemplEl2) do not influence the algorithm in any way.

Type parameterized functions are accommodated in a straightforward man-
ner in the algorithm presented. Section 3.5 has provided the details: If at least
one type instantiation of a function satisfies the signature of another function
that appears in the export-based qualifier, then we consider that the type param-
eterized function satisfies the qualifier’s function. Conversely, if the export-based
qualifier exports a type parameterized function, then only another type parame-
terized function will satisfy it and only if its set of valid type instantiations
includes the one of the qualifier’s function.

There are two additional points to mention with respect to MSGAs. Figure 18
presents a legal gidl specification, together with its corresponding MSGA bind-
ings. The first example in Figure 18 shows that we must preserve the inheritance
hierarchy among MSGAs. If this were not done, the compiler would find an error
while checking the correctness of the Type1 type in line 4. The B bound is
MSGA2, but B should also be bounded by MSGA1 from the definition of

//A. GIDL specification//

// Eg. 1

interface Type1<A:-Type1<A> > {...};

interface Type2<B:-Type2 > : Type1 {...};

// Eg. 2

interface Elem<C>{...};

interface Test1<D:-Elem<D> >{...};

interface Test2<E:-Elem<E> >{...};

//B. MSGA constructs for the GIDL specification in A.//

// Eg. 1

1. interface MSGA1<A>{...}; //A:-Type1<A>

2. interface MSGA2 : MSGA1{...}; //B:-Type2

3. interface Type1<A : MSGA1<A>> : MSGA1<A>{...};

4. interface Type2<B : MSGA2> :

Type1, MSGA2{...}; //***

// Eg. 2

5. interface MSGA3<T>{...}; //D:-Elem<D> and E:-Elem<E>

6. interface Elem<C> : MSGA3<C>{...};

7. interface Test1<D : MSGA3<D>>{...};

8. interface Test2<E : MSGA3<E>>{...};

Fig. 18. More MSGA Issues

Type1 in line 3. If no inheritance relation were defined among MSGA2 and MSGA1
interfaces, a compile-time error would be signaled.

In order to keep the number of generated MSGAs to a minimum, a simple
unification algorithm is employed among export-based qualification relations. The
second example in Figure 18 shows that only one MSGA (MSGA3) is constructed
for the D and E export-based qualifications (lines 6,7).

5 GIDL to C++ Mapping

This chapter presents the rationale behind the gidl C++ bindings. We start by
presenting the high-level mapping ideas, and the approach used to implement the
casting functionality of the gidl wrapper objects. We then show how the gidl
inheritance hierarchies are implemented and comment on the language features
that we found most useful in this context. Finally, we demonstrate the ease of
use of the gidl extension and reason about the soundness of the translation
mechanism.

5.1 High-Level Mapping Ideas

The mapping from gidl to C++ is for the most part quite easy and natural, as
the idl syntax and semantics are quite close to those of C++. We closely follow
the same conventions used in the standard idl to C++ mapping, so the user will
not feel any major conceptual difference when using our generic architecture.

gidl modules are translated into C++ namespaces; gidl interfaces into C++
(possibly template) classes, encapsulating all the functions that appear in the
gidl interface together with getter and setter functions for every attribute in the
gidl interface. A gidl structure is mapped to a C++ class, with setter and getter
functions for each field in the gidl structure. gidl basic types (short, long, etc)
are mapped to corresponding C++ types, providing the expected functionality
by means of operator overloading. gidl’s arrays and sequences are mapped by
type instantiating a C++ generic array/sequence class in which the “[]” operator
is overloaded. In our implementation, the relation between the wrapper objects
and the associated corba-objects is many to one: There can be several wrappers
storing the same corba-object. Memory management is simple, creating our
wrapper objects on the stack only. Thus there is no need for explicit de-allocation.

Our gidl-C++ stub and skeleton wrappers are encapsulated within the “GIDL”
and “GIDL implem” namespaces. gidl scopes directly create C++ scopes, as the
C++ semantics allows the definition of nested classes. A side-effect of this is that
the generic types defined by a generic gidl interface stay in the same position
after the C++ translation and do not create generic type duplicates for the nested
gidl structures (as happens in the Java mapping case).

In the example shown in Figure 19, a gidl specification containing a structure
type nested inside an interface type is similarly translated to C++ as a nested
definition of classes. The generic type parameter A is shared inside the nested
scope.

5.2 The Generic Base Class

Figure 20 presents a simplified version of the base class for the wrapper ob-
ject whose gidl type is String, WString or some interface. The type parame-
ter T denotes the current gidl class, A is its corresponding corba class, while
A v denotes the corba smart pointer helper type that assists with memory
management and parameter passing. The BaseObject class inherits from the

// GIDL:

interface GenericInterf<A> {

struct GenericStruct {

typedef A A_array[5][5];

A_array field;

};

};

- -

// C++:

template<class A> class GenericInterf: ... {

struct GenericStruct : GIDL::GIDL_Object {

typedef Array_GIDL<...,A,...> A_array;

public: A_array field; // ...

}

// ...

}

Fig. 19. Nested structures

ErasedBase class that stores the type-erased representation under the form of
a void pointer, and from the GIDL Type, the supertype of all gidl types. The
fillObjFromAny and fillAnyFromObj functions abstract the corba function-
ality of creating an object from a corba Any-type value, and vice-versa. They
are re-written for the String/WString types as the corba specific calls differ.
The implementation provides overloaded constructors, assignment operators and
accessor functions that work over various corba and gidl types, allowing the
user to manipulate in an easy and transparent way gidl wrapper objects.

The generic constructor (lines 18-20) receives as a parameter a gidl object
whose type is in fact GG. The use of BaseObject<GG, GG::GIDL A,GG::GIDL A v>,
together with the cast to A* in line 20, statically checks that the instantiation
of the type GG is a gidl interface type that is a subtype of the instantiation
of T (with respect to the original gidl specification). This irregular use of the
BaseObject type constructor is one of the generalized algebraic data types gadt
characteristics. Note also the use of the abstract type members GG::GIDL A and
GG::GIDL A v. The mapping also defines a type-unsafe cast operator (lines 24-
29) that allows the user to transform an object to one of a more specialized
type. The implementation, however, statically ensures that the result’s type is a
subtype of the current type.

5.3 Handling Multiple Inheritance

We now present the rationale behind the C++ mapping of the gidl inheritance
hierarchies. There are two main requirements that guided our design:

1 class ErasedBase { protected: void* obj; };

2 template<class T,class A,class A_v> class BaseObject :

3 public ErasedBase, public GIDL_Type<T> {

4 protected:

5 static void fillObjFromAny(CORBA::Any& a, A*& v) {

6 CORBA::Object_ptr co = new CORBA::Object();

7 a>>=co; A* w = A::_narrow(co); v = w;

8 }

9 static void fillAnyFromObj(CORBA::Any& a, A* v) { a<<=v; }

10 public:

11 typedef A GIDL_A; typedef A_v GIDL_A_v; typedef Self T;

12

13 BaseObject(A* ob) { this->obj = ob; }

14 BaseObject(const A_v& a_v) {this->obj=a_v._retn();}

15 BaseObject(const T& ob) { this->obj = ob.obj; } //

16 BaseObject(const GIDL::Any_GIDL& ob)

17 {T::fillObjFromAny(*ob.getOrigObj(),getOrigObj());}

18 template<class GG> BaseObject(

19 const BaseObject<GG,GG::GIDL_A,GG::GIDL_A_v>& o

20) { this->obj = (A*)o.getOrigObj(); }

21 /*** SIMILAR CODE FOR THE ASSIGNMENT OPERATORS ***/

22

23 operator A*() const { return (A*)obj; }

24 template < class GG > operator GG() const{

25 GG g; // test GG superclass of the current class!

26 if(0) { A* ob; ob = g.getOrigObj(); }

27 void*& ref = (void*&)g.getOrigObj();

28 ref = GG::_narrow(this->getOrigObj()); return g;

29 }

30 A*& getOrigObj() const { return (A*) obj; }

31 void setOrigObj(A* o) { obj = o; }

32

33 static A*& _narrow(const T& ob){return ob.getOrigObj();}

34 static CORBA::Any* _any_narrow(const T& ob) { /* ... */ }

35 static T _lift(CORBA::Any& a, T& ob)

36 { T::fillObjFromAny(a,ob.getOrigObj()); return ob; }

37 static T _lift(CORBA::Object* o) { return T(A::_narrow(o));}

38 static T _lift(const A* ob) { return T(ob); }

39 /*** SIMILAR: _lift(A_v) AND _lift(CORBA::Any& v) ***/

40 };

Fig. 20. The base class for the gidl wrapper objects whose types are gidl interfaces.
(We have omitted the inline keyword)

interface Comparable< K >

{ boolean operator">" (in K k); boolean operator"=="(in K k); };

interface BinTree< K:-Comparable<K>, D >

{ D getData(); K getKey(); D find(in K k); };

interface Leaf< K:-Comparable<K>, D > : BinTree<K,D>

{ void init(in K k, in D d); };

interface Node< K:-Comparable<K>, D > : BinTree<K,D>

{ BinTree<K,D> getLeftTree(); BinTree<K,D> getRightTree(); };

interface Integer : Comparable<Integer> { long getValue(); };

Fig. 21. GIDL specification and C++ client code for a binary tree

template<class K, class D> BinTree {

protected: ::BinTree* obj;

public: // system functionality

void setOrigObj(::BinTree* o) { obj = o; }

// GIDL specification functionality /* ... */

};

template<class K, class D> Node : public virtual BinTree<K, D> {

protected: ::Node* obj;

public: // system functionality

void setOrigObj(::Node* o) { obj = o; }

// GIDL specification functionality

BinTree<K,D> getLeftTree() { /* ... */ }

};

Fig. 22. Naive translation for the C++ mapping

– As far as the representation is concerned, each gidl wrapper stores precisely
one (corresponding) corba-type object: its erasure. This is a performance
concern. It is important to keep the object layout of the gidl stub wrapper
small.

– In terms of functionality, the gidl wrapper features only the casting func-
tionality associated with its type; in other words the system functionality is
not subject to inheritance. This is a type-soundness, as well as a performance
concern.

Throughout this section we refer to the gidl specification in Figure 21. We
first examine the shortcomings of a näıve translation that would preserve the
inheritance hierarchy among the generated gidl wrappers. Figure 22 shows such
an attempt. If each gidl wrapper stores its own representation as an object of its
corresponding corba-type, the wrapper object layout will grow exponentially.
An alternative would be to store the representation under the form of a void

template<class K,class D> class Leaf_P : public BinTree_P<K,D>{

protected:

virtual void* getErasedObj() = 0;

::Leaf* getObject_Leaf(){ return (::Leaf*)getErasedObj(); }

public:

void init(const K& a1, const D& a2) {

CORBA::Object_ptr& a1_tmp = K::_narrow(a1);

CORBA::Any& a2_tmp = *D::_any_narrow(a2);

getObject_Leaf()->init(a1_tmp, a2_tmp);

}

};

template<class K,class D> class Leaf :

public virtual Leaf_P< K, D >,

public BaseObject<Leaf<K,D>,::Leaf,::Leaf_var>

{

protected:

typedef Leaf<K,D> T;

typedef BaseObject<T,GIDL_A,GIDL_A_v> BT;

void* getErasedObj() { return obj; }

public:

Leaf() : BT() { }

Leaf(const GIDL_A_v a) : BT(a) { }

Leaf(const GIDL_A* a) : BT(a) { }

Leaf(const T & a) : BT(a) { }

Leaf(const Any_GIDL & a) : BT(a) { }

template <class GG> Leaf(

const BaseObject<GG, GG::GIDL_A, GG::GIDL_A_v>& a

) : BT(a) { }

/*** SIMILAR CODE FOR THE ASSIGNMENT OPERATORS ***/

};

Fig. 23. Part of the C++ generated wrapper for the gidl::Leaf interface. ::Leaf and
::Leaf var are corba-types

pointer in a base class and to use virtual inheritance (see the BaseObject class
in Figure 20). However, then the system is not type-safe, since the user may call,
for example, the setOrigObj function of the BinTree class to set the obj field
of a Node gidl wrapper. Now calling the Node::getLeftTree method on the
wrapper will result in a run-time error. This happens because the Node wrapper
inherits the casting functionality of the BinTree wrapper.

Figure 23 shows our solution. The abstract class Leaf P models the inher-
itance hierarchy in the gidl specification: it inherits from BinTree P and it
provides the implementation for the methods defined in the Leaf gidl interface
(n.n. init). Our mechanism resembles Scala [8] traits [9]. Leaf P does not encap-
sulate state and does not provide constructors, but inherits from the BinTree P
“trait”. It provides the services promised by the corresponding gidl interface,

and requires an accessor for the corba object encapsulated in the wrapper (the
getErasedObj function).

Finally, the Leaf wrapper class aggregates the casting functionality and
the services promised by the gidl specification by inheriting from Leaf P and
BaseObject respectively. It rewrites the functionality that is not subject to in-
heritance: the constructors and the assignment operators by calling the corre-
sponding operations in BaseObject. Note that there is no subtyping relation
between the wrappers even if the gidl specification requires it. However, the
templated constructor ensures a type-safe, user-transparent cast between say
Leaf<A,B> and BinTree<A,B>.

To summarize, the C++ binding uses gadts and abstract type members to en-
force a precise meta-interface of the extension. The latter we simulate in C++ by
using templates in conjunction with typedef definitions. Further on, the func-
tionality described in the gidl interface is implemented via traits. We represent
traits in C++ as abstract classes and the require services as abstract virtual
methods. The latter are provided by the gidl wrapper that “mixins” the two-
way gidl-corba casting with the functionality published in the specification.
Our extension experiment constitutes another empirical argument to strengthen
Odersky and Zenger’s claim that abstract type members, and modular mixin com-
position are vital in achieving first-class value components. We would add the
gadt technique to that.

5.4 Ease of Use

One additional feature of the gidl framework, in our view, is that it is much
simpler to be used than its underlying corba architecture. At a high-level,
this is accomplished by making the gidl wrappers to encapsulate a variety of
constructors, cast and assignment operators.

Figures 24A and B illustrate the corba/gidl code that inserts gidl/corba
Octet and String objects into Any objects, then performs the reverse operation
and prints the results. Note that the use of corba specific functions, such as
CORBA::Any::from string, is hidden inside the gidl wrappers; the gidl code
is uniform with respect to all the types, and mainly uses constructors and assign-
ment operators. All gidl wrappers provide a casting operator to their original
corba-type object that is transparently used in the statement that prints the
two objects. Figure 24C presents the implementation of the generic assignment
operator of the Any GIDL type. Since GIDL Type is an abstract supertype for
all gidl types, its use in the parameter declaration statically ensures that the
parameter is actually a gidl object. By construction, the only class that inherits
from GIDL Type<T> is T, therefore the dynamic cast is safe. Finally the method
calls the T:: lift operation (see Figure 20) that fills in the object encapsulated
by the gidl Any wrapper with the appropriate value stored in the T-type object.

Figure 24D presents one of the shortcomings of our mapping. The gidl wrap-
per for arrays, as for all the other gidl wrapper-types, has as representation
its corresponding corba generic-type erased object. The representation for an
Array T-type object will be an array of the corba Any type objects, since the

// A. CORBA code

using namespace CORBA;

Octet oc = 1; Char* str = string_dup("hello"); Any a_oc, a_str;

a_str <<= CORBA::Any::from_string(str, 0);

a_oc <<= CORBA::Any::from_octet (oc);

a_oc >>= CORBA::Any::to_octet (oc);

a_str >>= CORBA::Any::to_string (str, 0);

cout<<"Octet (1): "<<oc<<" string (hello): "<<str<<endl;

// B. GIDL code:

using namespace GIDL;

Octet_GIDL oc(1); String_GIDL str("hello"); Any_GIDL a_oc, a_str;

a_oc = sh; a_str = str; oc = a_oc; str = a_str;

cout<<"Octet (1): "<<oc<<" string (hello): "<<str<<endl;

// C. The implementation of the Any_GIDL::operator=

template<class T> void Any_GIDL::operator=(GIDL_Type<T>& b){

T& a = dynamic_cast<T&>(b);

if(!this->obj) this->obj = new CORBA::Any();

T::_lift(this->obj, a);

}

// D. GIDL Arrays

interface Foo<T> { //GIDL specification

typedef T Array_T[100];

T sum_and_revert(inout Array_T arr);

};

// C++ code using the GIDL specification above

Foo<Long_GIDL> foo = ...; Foo<Long_GIDL>::Array_T arr;

for(int i=0; i<100; i++) {

Long_GIDL elem(i); arr[i] = elem;

}

int sum=foo.sum_and_invert(arr); Long_GIDL arr_0=arr[0];

cout<<"sum (4950): "<<sum<<" arr[0] (99): <<arr_0<<endl;

Fig. 24. gidl/corba use of the Any type

Data Type In Inout Out Return

fixed struct ct struct& struct& struct& struct

var struct ct struct& struct& struct& struct*

fixed array ct array array array array sl*

var array ct array array array sl* array sl*

any ct any& any& any*& any*

...
Table 1. corba types for in, inout, out parameters and the result. ct = const, sl =
slice, var = variable.

erasure of the non-qualified type-parameter T is the Any corba type. Although
the user may expect that a statement like arr[i] = i inside the for-loop should
do the job, this is not the case. The reason is that Any GIDL does not provide
an assignment operator or constructor that takes an int parameter.

Another simplification that GIDL brings refers to the types of the in, inout
and out parameter, and the type of the result. Table 1 shows several of these
types as specified in the corba standard. The gidl parameter passing scheme
is much simpler: the parameter type for in is const T&, for inout and out is
T&, for the result is T, where T denotes an arbitrary gidl type. The necessary
type-conversions are hidden in the gidl wrapper.

5.5 Type-Soundness Discussion

We restrict our attention to the wrapper-types corresponding to the gidl in-
terfaces. The same arguments apply to the rest of the wrapper-types. Let us
examine the type-unsafe operations of the BaseObject class, presented in Fig-
ure 20. Note first that any function that receives a parameter of type Any GIDL
or CORBA::Any is unsafe, as the user may insert an object of a different type than
the one expected. For example the Leaf(const Any GIDL& a) constructor ex-
pects that an object of corba type Leaf was inserted in a: the user may decide
otherwise, however, and the system cannot statically enforce it. It is debatable
whether the introduction of generics to corba has rendered the existence of
the Any type unnecessary in gidl at the user level. We decided to keep it in
the language for backward compatibility reasons. The drawback is that the user
may manipulate it in a type-unsafe way.

In addition to these, there are two more unsafe operations:
template < class GG > operator GG() const { ... }
static T lift (const CORBA::Object* o) { ... }. The templated cast

operator is naturally unsafe, as it allows the user to cast to a more specialized
type. The lift method is used in the wrapper to lift an export-based qualified
generic type object (:-), since its erasure is CORBA::Object*. Its use inside the
wrapper is type-safe; however, if the user invokes it directly, it might result in
type-errors.

Our intent is that the user access to the gidl wrappers should be restricted
to the constructors, the assignment and cast operators, and the functionality

// GIDL specification

interface Foo<T, I:-Test, E: Test> {

Test foo(inout T t,inout I i,inout E e);

}

// Wrapper stub for foo

template<class T, class I, classE>

GIDL::Test Foo<T,I,E>::foo(T& t, I& i, E& e) {

CORBA::Any& et = T::_any_narrow(t);

CORBA::Object*& ei = I::_narrow(i);

CORBA::Test*& ee = E::_narrow(e);

CORBA::Test* ret = getObjectFoo()->foo(et, ei, ee);

return GIDL::Test::_lift(ret);

}

// Wrapper skeleton for foo

template<class T, class I, class E> ::Test Foo_Impl<T,I,E>::foo

(CORBA::Any& et, CORBA::Object*& ei, ::Test*& ee) {

T& t=T::_lift(et); I& i=I::_lift(ei); E& e=E::_lift(ee);

GIDL::Test ret = fooGIDL(t, i, e);

return GIDL::Test::_narrow(ret);

}

Fig. 25. gidl interface and the corresponding stub/skeleton wrappers for function foo

described in the gidl specification, while the rest of the casting functionality
should be invisible. However this is not possible since the narrow and lift
methods are called in the wrapper method implementation to cast the parame-
ters, and hence need to be declared public.

A type-soundness result is difficult to formalize as we are unaware of such re-
sults for (subsets of) the underlying corba architecture, and the C++ language
is type-unsafe. In the following we shall give some informal soundness arguments
for a subset of the gidl bindings. We assume that the user can access only wrap-
per constructors and operators and only those that do not involve the Any type.
The precise gadt interface guarantees that the creation of gidl objects will
not yield type-errors. It remains to examine method invocations. It is trivial to
see from the implementation of the lift, narrow, and any narrow functions
(Figure 20) that the following relations hold:
G:: lift[A*]◦G:: narrow[G] (a) ∼ a
G:: lift[Object*]◦G:: narrow[G] (a) ∼ a
G:: lift[Any]◦G:: any narrow[G] (a) ∼ a

where [] is used for the method’s signature, ◦ stands for function composition,
while g1∼g2 denotes that g1 and g2 are equivalent in the sense that they en-
capsulate the reference to the same corba object implementation. (The reverse
also holds.)

Figure 25 presents the gidl operation Foo::foo() and its C++ stub/skeleton
mapping. The stub wrapper will translate the parameter to an object of the

corresponding corba erased type via the narrow/ any narrow methods. The
skeleton wrapper does the reverse: lifts a corba type object to a corresponding
gidl type object. Since the instantiations for the T, I, and E type parameters
are the same on the client and server side, the above relations and the exact
gadt casting interface guarantee that the gidl object passed as parameter to
the stub wrapper by the client will have the same type and will hold a reference
to the same object-implementation as the one that is delivered to the fooGIDL
server implementation method. The same argument applies to the result object.

public interface GIDL_Value_Interf

{

public static org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();

public Object getOrigObj();

public void setOrigObj(Object o);

public GIDL_Value_Interf lift(Object o);

public Object narrow(GIDL_Value_Interf o);

public org.omg.CORBA.Any any_narrow(GIDL_Value_Interf go);

public GIDL_Value_Interf any_lift(org.omg.CORBA.Any a);

}

Fig. 26. The root parent for the gidl types

6 GIDL to Java Mapping

This chapter describes how the stub and skeleton wrappers are implemented
when the targeted language is Java. The Java mapping is a step back compared
with the C++ one, in the sense that the casting functionality between corba
and gidl types is not implemented in a type-exact manner. Work is in progress
to address this shortcomming.

6.1 Wrapper Stub Object Model

The Java translation follows the same rules defined in the standard idl to Java
mapping. The gidl inheritance hierarchy is translated to a corresponding in-
heritance hierarchy among Java interfaces, the root of the hierarchy being the
GIDL Value Interf interface. This interface, presented in Figure 26, specifies
the two-way (corba-gidl) casting functionality. As Java supports covariant
method overriding, subsequent specializations may refine the result type, but not
the parameter types. For example the Test interface will export the GIDL.Test
any lift(org.omg.CORBA.Any a) method.

One drawback of the Java mapping is that it requires the user’s help. Java
does not support object instantiation of a generic type parameter, e.g. new A().
Neither does it provide reflection feature on its generic types. The constructor of
a parameterized class (which is the mapping of a gidl type) will force the user
to pass an extra parameter for each generic type introduced by that class. This
is needed because otherwise we cannot enforce an exact boxing/unboxing mech-
anism between our wrapper objects and stub objects. The virtual call on such
an object will invoke the correct boxing/unboxing function for the instantiated
type, otherwise the lift/narrow methods will be called on the Java erased type
and this is not correct.

Figure 27 shows a piece of the generated wrapper stub for the following gidl
specification.

interface Foo { /*...*/ };

interface Test<T1:Foo, T2:-Foo, T3>

{ T1 op(in T1 t1, in T2 t2, in T3 t3, in Foo f); };

Interface Test receives three type parameters. T1 is bounded to be a subtype
of the class Foo, and this qualification is supported in Java. T2 is export-based
qualified by class Foo, therefore the Java mapping requires T2 to extend the
most specific generic unifier corrsponding to class Foo (see Section 4.3). T3 is
an unqualified type parameter, and thus the Java mapping requires that it ex-
tends from the root interface for all gidl types GIDL Value Interf. As discussed
above, the constructor of the Foo class receives, besides the corba reference,
three additional parameters of types T1, T2, and T3.

The implementation of the op function (in Figure 27) illustrates the method
invocation mechanism. All the wrapper objects received as parameters are un-
boxed to idl stub objects. Following the type erasure rules, a wrapper interface
type object is unboxed to the corba stub object it encapsulates (line //4), a un-
qualified generic type is erased to the CORBA.Any type (line //2), an extend-based
qualified generic type is unboxed to the idl-stub type associated with its quali-
fier (line //1) and finally an export-based qualified generic type is erased to the
CORBA::Object type (line //3). The idl stub method is invoked on the object
reference that our wrapper encapsulates (line marked 5) and finally the returned
corba stub object/value is boxed inside a stub wrapper object and is returned
to the client application (line //6). The additional parameter obj T1 GIDL is
used in this last instruction to create the result value. This is necessary because
new T1(); is not a valid instruction in Java.

6.2 Mapping GIDL Structures to Java

This section presents how the gidl structures that are nested in the scope of
a generic interface are translated to Java. An example of such a structure that
uses the generic types of the enclosing interface is shown below.

interface Base<C: Object, D, E> {

typedef struct BaseStruct {

C field_c;

E field_e; };

};

Since we have defined that the scope of a generic type parameter is through-
out the interface in which it is declared, the example is perfectly legal gidl
code. In order to perform the mapping, we need to know which are the generic
parameters used in the structure definition, and also any constraints that apply
to them. These additional generic types will parameterized the Java class that
corresponds to the gidl structure.

The Java mapping for the BaseStruct parameterized structure, presented
above is shown in Figure 28. Each wrapper stub class implements two methods:
lift and narrow, which are used to encapsulate and retrieve a corba-object.
However, since Java does not support any run time information with respect to

public class _TestStub <

T1 extends GIDL.Foo, T2 extends GIDL.MGGUs.MGGU_Foo_0,

T3 extends GIDL.GIDL_Value_Interf

> implements Test<T1,T2,T3> {

protected defaultpkg.Test obj;

private T3 obj_T3_GIDL;

private T2 obj_T2_GIDL;

private T1 obj_T1_GIDL;

public _TestStub(defaultpkg.Test ob, T1 obj1, T2 obj2, T3 obj3)

{ obj = ob; obj_T1_GIDL = obj1; obj_T2_GIDL = obj2; obj_T3_GIDL = obj3; }

public defaultpkg.Test getOrigObj()

{ return defaultpkg.TestHelper.narrow(obj); }

public Test<T1,T2,T3> any_lift(org.omg.CORBA.Any a) {

try {

defaultpkg.Test ob = defaultpkg.TestHelper.extract(a);

return (new _TestStub<T1,T2,T3>(

(defaultpkg.Test)ob, obj_T1_GIDL, obj_T2_GIDL, obj_T3_GIDL)

);

}catch(Exception exc)

{ System.out.println(exc); return null; }

}

/** any_narrow, narrow, setOrigObj methods are not presented here **/

/** ... **/

public GIDL.Foo op(

T1 a1_GIDL,

T2 a2_GIDL,

T3 a3_GIDL,

GIDL.Foo a4_GIDL

) {

defaultpkg.Foo a1 = a1_GIDL.narrow(a1_GIDL); // 1

org.omg.CORBA.Any a3 = a3_GIDL.any_narrow(a3_GIDL); // 2

org.omg.CORBA.Object a2 = a2_GIDL.narrow(a2_GIDL); // 3

defaultpkg.Foo a4 = a4_GIDL.narrow(a4_GIDL); // 4

defaultpkg.Foo a0_GIDL = obj.op(a1, a2, a3, a4); // 5

return (T1)obj_T1_GIDL.lift(defaultpkg.FooHelper.narrow(a0_GIDL)); // 6

}

}

Fig. 27. Excerpt of Java wrapper stub code

package GIDL.Base;

import GIDL.*;

public final class BaseStruct <

C extends GIDL.GIDL_Object,

E extends GIDL.GIDL_Value_Interf

> implements GIDL.GIDL_Value_Interf {

private org.omg.CORBA.Object obj;

private C c; private E e;

public BaseStruct(C c, E e, org.omg.CORBA.Object ob)

{ obj = ob; this.c = c; this.e = e; }

public BaseStruct(C c, E e)

{ this.c = c; this.e = e; }

public BaseStruct<C, E> lift(org.omg.CORBA.Object b)

{ return (new BaseStruct<C, E>(c, e, b)); }

public Base.BaseStruct narrow(BaseStruct<C, E> t)

{ return t.obj; }

public BaseStruct<C, E> any_lift(org.omg.CORBA.Any a){

try{ Base.BaseStruct ob =

Base.BaseStructHelper.extract(a);

return (new BaseStruct<C, E>(c, e, ob));

} catch(Exception exc){ /* ... */ }

}

public org.omg.CORBA.Any any_narrow(BaseStruct<C,E>o){

try{ org.omg.CORBA.Any a = orb.create_any();

Base.BaseStruct bb = o.obj;

Base.BaseStructHelper.insert(a, bb);

return a;

} catch(Exception exc){ /* ... */ }

}

// ...

public C get_field_c()

{ return (C)c.lift(obj.field_c); }

public void set_field_c(C co)

{ obj.field_c = c.narrow(co); }

public E get_field_e()

{ return (E)e.any_lift(obj.field_e); }

public void set_field_e(C eo)

{ obj.field_e = e.any_narrow(eo); }

}

Fig. 28. Java mapping for a GIDL nested structure

type variables, we cannot declare the lift and narrow methods statically. We
ask the user to provide a trivial object for each type variable in the declaration
of an interface. This allows dynamic creation of new instances of the variable
type using virtual calls to lift, any lift on the trivial objects. The any lift
and any narrow methods are similar to lift and narrow and are used for the
unqualified generic types (as their erasure is the idl any type). In addition,
the gidl wrappers provide an implementation for each method in the declara-
tion of the corresponding gidl interface and for any the get and set methods
corresponding to fields in the structure definition.

7 Installation

We assume you have already downloaded the gidl.tar.gz file. Decompress the
gidl.tar.gz file:

$ tar -zxvf gidl.tar.gz
The environment variable GIDL INSTALL should point to the folder that is
obtained as a result of the previous operation. GIDL INSTALL contains three
directories: Doc, GIDLcompiler and Tests. The Doc folder contains this doc-
ument, and the gidl relevant papers. The GIDLcompiler folder contains the
sources and the instalation of the gidl compiler, together with that part of the
language bindings that is static (not generated by the gidl compiler). The latter
rezides in the GIDLcompiler/Include folder.

To proceed with the instalation type:
$ cd GIDLcompiler/src
$./compileGIDL.sh

The gidl compiler will be built. Ignore the warning messages:

Note: Some input files use unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

If you have not already done so, it is time to download and install the
Mico and Orbacus CORBA implementations. The environment variables ORBA-
CUS PATH and MICO PATH are to point to the instalation folders of these ar-
chitectures. Similarly, the environment variables JAVA PATH and GCC PATH
point to the instalation folders of Java and C++, respectivelly. All the C++ tests
for gidl were build under gcc2.95.3. Finally, define the following environment
variables:
export GIDL INCLUDE=$GIDL INSTALL/GIDLcompiler/Include
export GIDL MAIN=$GIDL INSTALL/GIDLcompiler
export TLS JAVA PATH=$GIDL INSTALL/GIDLcompiler/DTLS/classes
A sample of my .bashrc file is placed in GIDL INSTALL/dotbashrc.

interface Comparable< T > {

boolean operator">" (in T k); boolean operator"=="(in T k);

};

interface Integer : Comparable<Integer>

{ long getValue(); };

interface BinTree< K:-Comparable<K>, D > {

D getData(); K getKey(); D find(in K k);

};

interface Leaf< K:-Comparable<K>, D > : BinTree<K,D> { };

interface Node< K:-Comparable<K>, D > : BinTree<K,D> {

BinTree<K,D> getLeftTree(); BinTree<K,D> getRightTree();

};

interface TreeFactory<K:-Comparable<K>, D> {

Integer createInteger(in long val);

BinTree<K,D>createLeaf(in K k, in D d);

BinTree<K,D>createNode(in K k, in D d, in BinTree<K,D> right,

in BinTree<K,D> left);

};

Fig. 29. gidl adt-like specification of a binary tree

8 Examples

The Tests folder contains several examples of gidl applications. Based on these
examples we demonstrate how to use gidl to write multi-language, distributed
programs that make use of parametric polymorphism.

8.1 Abstract Data Type (ADT)-like binary tree

The CppBinTreeADT folder contains C+ code that implements a simple binary
tree server, together with a C++ and Java client programs that use the server’s
functionality.

GIDL Interface for a Binary Tree
Figure 29 presents the content of the gidl specification file BinTree.tidl.

The BinTree, Leaf and Node interfaces implement the functionality of a binary
tree. They are type-parameterized under the types of keys (K) and data (D)
stored in the nodes/leaves. Each interface defines a number of operations that
are guaranteed to be serviced by a server-implementation. As defined by corba-
idl, there are three parameter-passing conventions: The in parameter passing
means call-by-value, inout parameter-passing is call-by-value-return, while out

parameter passing does not expect the parameter to be a valid reference to an
object-implementation.

We remind the reader that gidl introduces a parametric polymorphism
model that supports F-bounded quantifications [1] based on named and struc-
tural subtyping. Type variables can be restricted to explicitly extend a given
interface, or to implicitly implement all the functionality (methods) of a given
interface. The latter was introduce to address code extensibility and re-usability
issues, allowing the programmer to design a clean and precise specification, and
to avoid unnatural inheritance relations between interfaces. Following the same
approach as in Generic Java [10, 15], we consider the subtyping to be invari-
ant for parameterized types. For example, even if Elem is a subtype of Object,
Comp<Elem> is not a subtype of Comp<Object>.

The type-variable K in the definition of the BinTree interface is an ex-
ample of export-based qualification. A valid instantiation for K, say Integer,
is required to implement the whole functionality of its qualifier, in this case
Comparable<Integer>. In our case, this functionality consists of the compari-
son operations > and == that receive as parameter an object of type Integer
and return a boolean value. Note also that the definition of the K parameter
uses F-bounded quantification: the type parameter appears in the expression of
its qualifier Comparable<K>.

The extension-based definition for the type-parameter K is denoted by K :
Comparable<K>, with the semantics that the instantiation of K, say Integer is
required to be in a subtyping relation with its qualifier:

Integer<:Comparable<Integer>.
gidl also supports unqualified generic types, similar to templates in C++ (e.g.

K in the definition of the Comparable interface). This allows the instantiation to
be any gidl type.

To wrap it up, Figure 29 specifies the interface of a binary tree. A binary
tree can be a node, or a leaf; note that both Node and Leaf interfaces inherit
from BinTree. Nodes and leafs implement the getData, getKey, and find ser-
vices. The first two return the data/key stored in that tree. The latter finds the
data of a child-node identified by a given key. In addition, a node implements
the getLeftTree and getRightTree services that return its left and right child
respectivelly. The Integer interface constitutes a valid instantiation for the K
parameter in the definition of the BinTree interface. Finally the TreeFactory
interface provides the means to construct nodes and leafs.

Compiling and Running the Binary Tree Example

The first time you run the gidl compiler on a given gidl specification you
should start it in graphical mode:

java GIDLcompiler -GI BinTree.tidl &
Check the idl, C++ and Java check boxes such that the compiler will generate
both C++ and Java stubs. In the Paths tab fill in the paths where you want
the language-specific stubs to be generated. Choose the current folder for the

Make Leafs: b6 = (6,6), b8 = (8,8), b10 = (10,10), b13 = (13,13)

Make Nodes: b7 = (7,7,b6,b8), b11 = (11,11,b10,b13), b9 = (9,9,b7,b11)

b9: key: 9 data: 9

Find in b9 key 8 with data: 8

END

Fig. 30. Client output for the binary tree example

idl file, the ./Cpp/./Java folder for the C++/Java stubs. The information in
the Java naming/C++ naming tabs teaches gidl specific naming conventions
of the underlying corba implementation. The operators tab allows the user to
refine the default naming scheme for operator overloading. You can find two
examples of such configuration files in the $GIDL INCLUDE folder. As this ex-
ample uses operator overloading, select the OperatorsMappingCpp.txt file, in
the $GIDL INCLUDE folder, for the C++ language. Press the compile button to
generate the Java/C++ gidl stubs. The next time you run the gidl compiler
for the same example, for example if you modify the specification, you need not
start the graphical interface again. You can just type:
java GIDLcompiler -i -j -c BinTree.tidl
where -i,-j,-c stand for generate the idl erased file, the Java/C++ gidl stubs.

The idl erased file BinTree erased GIDL.idl has been generated in the
current directory (CppBinTreeADT). Copy it to the Cpp folder and Java folder
and compile it with an idl compiler for C++ and Java, respectively. For example
with mico for C++ type in:
Cpp$ idl --any --poa BinTree erased GIDL.idl
while for Java type in
Java$ jidl BinTree erased GIDL.idl
You will find a server.cpp file that implements the binary tree in the Cpp
folder and a client.cpp and a client.java in the Cpp/Java folders, which
implement a simple client that creates a tree, looks for a node that is associated
with a specific key, and returns the data corrsponding to that node/leaf. The
Cpp folder also contains the compile client and compile server scripts that
generate the client and server executables. Modify them to fit your working
environment. To compile the Java client, just go in the Java folder and type
$javac client.java.
Now start the C++ server ($./server) with either the C++ client or the Java
client. The output is shown in Figure 30.

Programming the Client and the Server

Figure 31 shows an excerpt of C++ client code that performs operations on
a binary tree. The code first reads the corba server reference stored in the
file ../Factory.ref. (The server is the one that generates this file.) Then the
corba function string to object is employed to build an object that acts as

int run(CORBA::ORB_ptr orb) {

const char* refFile = "../Factory.ref"; ifstream in(refFile);

char s[2048]; in >> s; cout<<"Ref is:\n "<<s<<endl;

CORBA::Object_var obj = orb->string_to_object(s);

::TreeFactory_var f = ::TreeFactory::_narrow(obj);

GIDL::TreeFactory<GIDL::Integer, GIDL::Integer> factory(f);

typedef GIDL::BinTree<GIDL::Integer, GIDL::Integer> BinIntTree;

GIDL::Integer i6 = factory.createInteger(6),

i6d = factory.createInteger(6),

/** same for i7, i7d, i8, i8d, i9, id9, i10, i10d, i11, i11d ... **/

BinIntTree b6 = factory.createLeaf(i6, i6d);

/** same for leafs b8, b10, b13 **/

BinIntTree b7 = factory.createNode(i7, i7d, b6, b8);

/** same for nodes b9 and b11 **/

/** find the node corrsponding to the key 8 in the tree b9 **/

GIDL::Integer res = b9.find(i8);

if(!is_nil(res))

cout<<"Find key 8 with data: "<<(int)res.getValue()<<endl;

else cout<<"Not found"<<endl;

Fig. 31. Client output for the binary tree example

a proxy for the server. In our case the corba object’s type is: ::TreeFactory.
So far we have used only corba functionality. To work with generic types, we
next create a gidl object that encapsulates the generic type information:
GIDL::TreeFactory<GIDL::Integer, GIDL::Integer> factory(f);
Note that the current version of gidl does not support type-parameterized func-
tions, as the mechanism to support them would involved run-time recompilation.
Therefore we assume that the user knows the precise type of the server object, in
our case TreeFactory<Integer,Integer>. From this point on, the user works
with gidl objects of exact (templated) types. The client code uses the func-
tionality described in the gidl interface to build a binary tree, by creating the
appropriate nodes and leafs. Finally the client calls the find function on the
binary tree object b9 to get the data associated with the node identified by a
key of value 9 and prints out the result. The Java client code is similar (take a
look at the Java/client.java file).

Figure 32 shows the implementation of the BinTree gidl interface. Every
gidl implementation should inherit the corrsponding gidl skeleton class, in this
case POA GIDL::BinTree<K,D>, and implement the functionality described in the
gidl interface: the getKey, getData. The find function is declared abstract,
to be implemented in the Leaf and Node classes. Note that corba-idl does
not support method overloading/overriding. gidl alleviate this shortcomming to
some degree by supporting method and operator overloading. However, method

template<class K, class D>

class BinTree_Impl : public virtual POA_GIDL::BinTree<K,D>,

public virtual ::PortableServer::RefCountServantBase {

protected:

K key;

D data;

public:

BinTree_Impl() { }

virtual K getKeyGIDL() throw(CORBA::SystemException) { return key; }

virtual D getDataGIDL()throw(CORBA::SystemException) { return data;s}

virtual D findGIDL(K& a1_GIDL)throw(CORBA::SystemException)=0;

};

Fig. 32. Server implementation for the BinTree gidl interface

overriding is not supported. This is because, virtual dispatch can be achieved
at the implementation (server) level if desired, by declaring the given function
abstract in the parent and implementing it in the child classes.

int run(CORBA::ORB_ptr orb) {

CORBA::Object_var poaObj = orb -> resolve_initial_references("RootPOA");

PortableServer::POA_var rootPoa = PortableServer::POA::_narrow(poaObj);

PortableServer::POAManager_var manager = rootPoa -> the_POAManager();

GIDLImplem::TreeFactory_Impl<GIDL::Integer, GIDL::Integer>* fact_impl =

new GIDLImplem::TreeFactory_Impl<GIDL::Integer, GIDL::Integer>();

::TreeFactory* factory = fact_impl->_thisGIDL();

CORBA::String_var s = orb -> object_to_string(factory);

const char* refFile = "../Factory.ref";

ofstream out(refFile); out << s << endl; out.close();

manager -> activate(); orb -> run(); return EXIT_SUCCESS;

}

Fig. 33. Server program

Finally, Figure 33 shows the program that runs the server. The first three
lines in the run function create an instance of an portable server inheritance
model (poa) manager. Then a factory server object corresponding to the gidl
type TreeFactory<Integer; Integer> is created and its corresponding corba
reference is published in the ../Factory.ref file, in order to be used by the
client. Finaly, the poa manager is activated and the object request broaker
(orb) may now service client requests.

8.2 Standard Template Library Mapping

The folder CppSTL contains the code that exports part of the C++ Standard Tem-
plate Library (stl) to a heterogeneous environment via gidl. The IDLspec folder
contains the gidl specifications, while the Stubs folder contains the C++/Java
client and the C++ server.

Compiling and Running the stl Example

First, go into the IDLspec folder, and run the gidl compiler in graphical
mode:

java GIDLcompiler -GI STLfactory.tidl &
Check the idl, C++ and Java check boxes such that the compiler will generate
both C++ and Java stubs. In the Paths tab, choose the CppSTL/Stubs/CppServer
folder as the location where the compiler will generate the C++ stubs. Similarly,
choose the current folder for the idl file, and choose CppSTL/Stubs/JavaClient
for Java. As this example uses operator overloading, in the Operators tab, select
the OperatorsMappingCpp.txt file for the C++ language. The latter is located
in the $GIDL INCLUDE folder, for the C++ language. Press the compile button
to generate the Java/C++ gidl stubs. The next time you run the gidl compiler
for this application, for example if you modify the specification, you need not
start the graphical interface again. You can just type:
java GIDLcompiler -i -j -c STLfactory.tidl
where -i,-j,-c stand for generate the idl erased file, the Java/C++ gidl stubs.

The idl erased file STLfactory erased GIDL.idl has been generated in the
current directory (IDLspec). Copy it to the ../Stubs/CppServer/,
../Stubs/CppClient, and ../Stubs/JavaClient folders. Go in each of these
folders and compile the idl file:
CppServer$ idl --any --poa BinTree erased GIDL.idl
CppClient$ idl --any --poa BinTree erased GIDL.idl
JavaClient$ jidl BinTree erased GIDL.idl
for C++ and Java respectively.
Edit the CppSTL/Stubs/CppServer/STLfactory erased GIDLGIDL.h and re-
place the following code in the BaseIterator GIDLP class:

typedef T value_type;

typedef GIDL::UnsignedLong_GIDL size_type;

typedef GIDL::Long_GIDL difference_type;

with this one below:

typedef T value_type;

typedef unsigned int size_type;

typedef int difference_type;

typedef input_iterator_tag iterator_category;

typedef T* pointer;

typedef T& reference;

This is needed in order to allow the gidl iterators to be valid stl iterators.
Next go to the CppSTL/Stubs/CppServer folder and copy the
STLfactory erased GIDLGIDL.h file into the CppSTL/Stubs/CppClient folder.
Go into each of these folders (CppServer, CppClient, JavaClient) and modify
the compile client/compile server scripts to suit your working environment.
You can now run the C++ server with either the Java or C++ client.
CppServer$./server
CppClient$./client
JavaClient$ java client

STL translation discussion

Technical details about translating stl to a heterogeneous environment can
be found in the Generic Library Extension in a Heterogeneous Environment, by
Oancea and Watt [7]. The ../CppSTL/Stubs/LibTransl.h file implement the
library wrappers and the trappers that enable the stl library semantics and
programming idioms at the gidl level.

Note that the client code is quite close to the stl programming style. Some
casts to the C++ basic types are still needed though. The code below reads the
first ten elements of an iterator and set them to 10 + i where i goes from 0 to
10.

isOK = true;

for(int i=0; i<10; i++) {

int elem_i = (int)gidl_vect[i];

if(elem_i!=i) isOK = false;

gidl_vect[i] = i + 10;

}

The code below demonstrates how the use of the replace algorithm. The
iterator elements which are equal to 19 are replaced with 99.

rai_Long beg = gidl_vect.begin();

rai_Long end = gidl_vect.end();

rai_Long tmp = beg;

replaceAlg.replace(beg, end, 19, 99);

while(tmp!=end) {

int elem = (int)*tmp++;

if(elem == 19) cout<<"ERROR"<<endl;

}

8.3 Comprehensive Example

The last gidl example can be found in the TestGIDL folder. Its purpose is to
demonstrate how to use various gidl types: array, sequences, structures, inter-
faces. The folder TestGIDL/Cpp contains a C++ client and server, while the folder
TestGIDL/Java contains a Java client and server.

Folow the same procedure described in detail for the latter two examples to
compile the C++/Java client and server. Run the java client with the Java server,
and the C++ client with the C++ server. You should get a list of prints of the
form:

After calling op...: OK

Before calling op...: OK

You may try to run the Java server with the C++ client, or vice-versa. You
will note that: First, the Java/C++ server/client are incompatible in the sense
that they are not doing the same thing. The consequence is that the printouts
will not look like the one above. This is to be expected! Second, the Java/C++
client may broke. This is because of incompatibilities between the underlying
corba implementations (passing out parameters, for example).

References

1. P. Canning, W. Cook, W. Hill, and W. Olthoff. F-Bounded Polymorphism for
Object Oriented Programming. In ACM Symposium on Functional Programming
Languages and Computer Architecture (FPCA), pages 273–280, 1989.

2. Y. Chicha, M. Lloyd, C. Oancea, and S. M. Watt. Parametric Polymorphism for
Computer Algebra Software Components. In Proc. 6th International Symposium on
Symbolic and Numeric Algorithms for Scientific Comput., pages 119–130. Mirton
Publishing House, 2004.

3. J. Farley. Java Distributed Computing. O’Reilly, 1998. ”Wiley computer publish-
ing.”.

4. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A Minimal Core Cal-
culus for Java and GJ. In Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), 1999.

5. K. Keahey. A Brief Tutorial on CORBA,
http://www.cs.indiana.edu/ kksiazek/tuto.html.

6. C. E. Oancea and S. M. Watt. Parametric Polimorphism for Software Compo-
nent Architectures. In Proceedings of the 20th Annual ACM Conference on Object
Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
147–166, 2005.

7. C. E. Oancea and S. M. Watt. Generic Library Extension in a Heterogeneous
Environment. In Library Centric System Design Workshop (LCSD’06), 2006.

8. M. Odersky and al. Technical Report IC 2004/64, an Overview of the Scala Pro-
gramming Language. Technical report, EPFL Lausanne, Switzerland, 2004.

9. M. Odersky, V. Cremet, C. Rockl, and M. Zenger. A Nominal Theory of Objects
with Dependent Types. In Proceedings of ECOOP’03, July 2003.

10. M. Odersky, P. Wadler, G. Bracha, and D. Stoutamire. Making the Future Safe for
the Past: Adding Genericity to the Java Programming Language. In C. Chambers,
editor, ACM Symposium on Object Oriented Programming: Systems, Languages,
and Applications (OOPSLA), pages 183–200, 1998.

11. OMG. Common Object Request Broker Architecture — OMG IDL Syntax and
Semantics. Revision2.4 (October 2000), OMG Specification, 2000.

12. OMG. Common Object Request Broker: Architecture and Specification. Revi-
sion2.4 (October 2000), OMG Specification, 2000.

13. G. D. Plotkin. A Note on Inductive Generalization. In Machine Intelligence, pages
153–163, 1970.

14. J. C. Reynolds. Transformational Systems and the Algebraic Structure of Atomic
Formulas. In Machine Intelligence, 5(1), pages 135–151, 1970.

15. M. Viroli and A. Natali. Parametric Polymorphism in Java: an Approach to Trans-
lation Based on Reflective Features. In OOPSLA’00 Proceedings, pages 146–165.
ACM, 2000.

