Siyuan Deng ${ }^{1}$ Zahra Mohammadi ${ }^{2} \quad$ Greg Reid 1

${ }^{1}$ Univ. of Western Ontario
SYNASC 2022
${ }^{2}$ Univ. of Guelph

Motivation

Under and over determined systems of differential equations arise in applications and have hidden constraints. We can determine those constraints by prolongation and projection. Usually, models in application can be partitioned to two parts: exact and approximate. For example, consider the equation $\nabla^{2} u=f(x, y, z)$. The left hand side of the following equation is the gravity potential, which is exact, where the right hand side is the density of instellar gas, which is approximate, since it is derived from data. So it is natural to exploit exact and approximate structure.

Prolongation and projection
If we consider u_{i} as the i th order derivatives of u,
(1) single prolongation:
$D(R)=\left\{(x, u, \ldots, \underset{q+1}{u}) \in J^{q+1}: R=0, D_{x^{1}} R=\cdots=D_{x^{n}} R=0\right\}$
(2) single projection:
$\pi(R)=\left\{\left(x, u_{0}^{u}, \ldots,{ }_{q-1}^{u}\right) \in J^{q-1}: R\left(x,{\underset{0}{0}}^{u}, \underset{1}{u}, \ldots,{ }_{q}^{u}\right)=0\right\}$.
(3) multiple prolongation and projection: done by iteration

Geometric involutive form(GIF)
(1) Input: linear approximate system \& initial data list
(2) prolongation \& substitution of rif-form of exact subsystem
(3) geometric involutive basis
(4) geometric involutive basis
(4) itput: matrices incluidng info of dimension of kernal, row space, etc.

Joint exact and approximate
Suppose we have hybrid system R. Now we can partition it into exact part and approximate part. The exact subsystem is a general PDE system, and we can apply differential elimination, here we use rifsimp, a alredaydefined algorithm. Then we can apply our geometric invoulutive form to the approximate subsystem. We need to amalgamate these different methods, by using geometric invariants, such as differential Hilbert function(DHF) Apply DHF to exact part then we can use derived info to seek joint GIF.

Algorithm 1

Algorithm 1 SplitExactApprox

Input: Disioint systems exact system ExSys, approximate system ApSys and a flag.
ApSys and a flag.
Output: [rExSys, SimpApSys, flag]
where rExSys is in rif-form, SimpApSys is an approximate system simplified with respect to EXXSys .
1: Find the rifform of ExSys w.r.t an orderly ranking rExSys := rif(ExSys)
Simplify the approximate system w.r.t the exact system: SimpApSys := dsubs(rExSys, ApSys)
3. ExSimpApSys:= ExactSystem(SimpApSys)
4: if ExSimpApSys $=\emptyset$ then flag:=false else flag:=true end if
5: ExSys := rExSys \cup ExSimpApSy
6: ApSys:= SimpApSys \backslash ExSimpApSys
7. return [ExSys, ApSys, flag]

Hybrid system of Poisson equation
Suppose we have an equation, with right hand side defined as approximate.
$u_{x x}+u_{y y}+u_{z z}=\frac{1}{2}(G(x, y, z+0.001)+G(x, y, z-0.001))$
The linearized form of local Lie symmetry group is:

$$
\begin{align*}
& \tilde{x}=x+\xi(x, y, z, u) \epsilon+O\left(\epsilon^{2}\right) \\
& \tilde{y}=y+\eta(x, y, z, u) \epsilon+O\left(\epsilon^{2}\right) \\
& \tilde{z}=z+\zeta(x, y, z, u) \epsilon+O\left(\epsilon^{2}\right) \\
& \tilde{u}=u+\phi(x, y, z, u) \epsilon+O\left(\epsilon^{2}\right) \tag{2}
\end{align*}
$$

Determining the components ξ, η, ζ, ϕ of (2) leads a linear homogeneous system called determining equations $[1,4]$. Some existing computer algebra implementations are $[6,2,3,5]$.
$R=\left[\phi_{u}-\frac{\phi}{u}=0, \eta_{u}=0, \eta_{u, u}=0, \xi_{u}=0, \xi_{u, u}=0, \zeta_{u}=0\right.$, $-2 \eta_{y}+2 \zeta_{z}=0,-2 \eta_{x, u}-2 \xi_{y, u}=0,-2 \eta_{y, u}+\phi_{u, u}=0$,
$-2 \xi_{x, u}+\phi_{u, u}=0,-2 \zeta_{x}-2 \xi_{z}=0,-2 \zeta_{y}-2 \eta_{z}=0$,
$-2 \zeta_{y, u}-2 \eta_{z, u}=0,-2 \zeta_{z, u}+\phi_{u, u}=0,-2 \eta_{x}-2 \xi_{y}=0$,
$-2 \xi_{x}+2 \zeta_{z}=0, \zeta_{u, u}=0,-2 \zeta_{x, u}-2 \xi_{z, u}=0$,
$-2 \zeta_{y, u}-2 \eta_{z, u}=0,-2 \zeta_{z, u}+\phi_{u, u}=0$,
$-\eta_{u} G-\eta_{x, x}-\eta_{y, y}+2 \phi_{y, u}-\eta_{z, z}=0$,
$-\xi_{u} G-\xi_{x, x}+2 \phi_{x, u}-\xi_{y, y}-\xi_{z, z}=0$,
$-3 \zeta_{u} G-\zeta_{x, x}-\zeta_{y, y}+2 \phi_{z, u}-\zeta_{z, z}=0$
$\left.\phi_{x, x}+\phi_{y, y}+\phi_{z, z}-\eta G_{y}-\zeta G_{z}-\xi G_{x}+\phi_{u} G-2 \zeta_{z} G=0\right]$

Algorithm 2

Algorithm 2 HybridGeometriclnvolutiveForm Input: Linear Homogeneous differential system R.
Input: Linear Homogeneous differential system R.
Output: Geometric Involutive Form for system R
1: Lines 1 to 5: split the system into ExSys and ApSys
ExSys:= \emptyset, ApSys := R
2: flag: =true
3: while flag = true do
4: [ExSys, ApSys, flag]:= SplitExactApprox(ExSys, ApSys, flag)
6: Compute the ID and Differential Hilbert Function for ExSys determining its involutivity order
7: IDExSys := initialdata(ExSys)
8: HFExSys:= DifferentialHilbertFunction(IDExSys,s)
9: for k from 0 do
10: Compute and simplify prolongations
10: \quad DApSys $[k]:=\operatorname{dsubs}\left(E x S y s, D^{k}\right.$ ApSys)
12: return [ExSys, ApSys, DApSys[k]] HFExSys, IDExSy
Application of algorithms 1 on Poisson equation

Applying rifsimp to ExSys yields

$$
\begin{aligned}
& \mathrm{rExSys}:=\left[\eta_{z, z, z}=0, \xi_{z, z, z}=0, \zeta_{z, z, z}=0,\right. \\
& \\
& \quad \xi_{y, y}=\xi_{z, z}, \xi_{y, z}=0, \eta_{x}=-\xi_{y}, \xi_{x}=\zeta_{z}, \\
& \zeta_{x}=-\xi_{z}, \eta_{y}=\zeta_{z}, \zeta_{y}=-\eta_{z}, \eta_{u}=0, \\
& \\
& \left.\phi_{u}=\frac{\phi}{u}, \xi_{u}=0, \zeta_{u}=0\right]
\end{aligned}
$$

Now we sim
SimpApSys:=
$\left[-\frac{\xi_{z, z} u-2 \phi_{x}}{u}=0, \frac{-\eta_{z, z} u+2 \phi_{y}}{u}=0, \frac{\zeta_{z, z} u+2 \phi_{z}}{u}=0\right.$,
$\left.\frac{G \phi}{u}+\phi_{x, x}+\phi_{y, y}+\phi_{z, z}-2 G \zeta_{z}-\eta G_{y}-\xi G_{x}-\zeta G_{z}=0\right]$
Notice that the first 3 equations of SimpApSys are now exact and they can be removed to yield an updated
ApSys $:=\left[\frac{G \phi}{u}+\phi_{x, x}+\phi_{y, y}+\phi_{z, z}-2 G \zeta_{z}-\eta G_{y}-\xi G_{x}-\zeta G_{z}=0\right]$ The 3 exact equations can be appended to rExSys to give an updated ExSys:

ExSys :=rExSys \cup

$$
\left[-\frac{\xi_{z, z} u-2 \phi_{x}}{u}=0, \frac{-\eta_{z, z} u+2 \phi_{y}}{u}=0, \frac{\zeta_{z, z} u+2 \phi_{z}}{u}=0\right]
$$

Application of algorithm 2 on
Poisson equation
Applying rifsimp to the new ExSys, yields:
rExSys : $=\left[\xi_{u}=0, \eta_{u}=0, \zeta_{u}=0, \xi_{y, z}=0, \phi_{x, x}=0\right.$,
$\phi_{x, y}=0, \phi_{x, z}=0, \phi_{y, y}=0, \phi_{y, z}=0, \phi_{z, z}=0, \xi_{x}=\zeta_{z}$,
$\eta_{y}=\zeta_{z}, \eta_{x}=-\xi_{y}, \zeta_{x}=-\xi_{z}, \zeta_{y}=-\eta_{z}, \phi_{u}=\frac{\phi}{u}$,
$\left.\xi_{y, y}=\frac{2 \phi_{x}}{u}, \xi_{z, z}=\frac{2 \phi_{x}}{u}, \eta_{z, z}=\frac{2 \phi_{y}}{u}, \zeta_{z, z}=-\frac{2 \phi_{z}}{u}\right]$
The initial data about a point $w^{0}=\left(x^{0}, y^{0}, z^{0}, u^{0}\right)$ for this system is
$\left[\eta\left(w^{0}\right)=c_{1}, \eta_{z}\left(w^{0}\right)=c_{2}, \phi\left(w^{0}\right)=c_{3}, \phi_{x}\left(w^{0}\right)=c_{4}\right.$
$\phi_{y}\left(w^{0}\right)=c_{5}, \phi_{z}\left(w^{0}\right)=c_{6}, \xi\left(w^{0}\right)=c_{7}, \xi_{y}\left(w^{0}\right)=c_{8}$
$\left.\xi_{z}\left(w^{0}\right)=c_{9}, \zeta\left(w^{0}\right)=c_{10}, \zeta_{z}\left(w^{0}\right)=c_{11}\right]$
and the Differential Hilbert Function is

$$
\begin{equation*}
H(s)=4+7 s \tag{3}
\end{equation*}
$$

Following our Intersection algorithm we simplify ApSys with respect to the new rExSys and obtain:

SimpApSys : $=\left[-\eta G_{y}-\zeta G_{z}-\xi G_{x}-2 \zeta_{z} G+\frac{\phi G}{u}=0\right] \quad$ (4) We note that both the order 2 prolongation of rExSys and indeed SimpApSys is also involutive. What remains is to prolong SimpApSys:

$$
\begin{equation*}
\text { SimpApSys }[k]:=\operatorname{dsubs}\left(\text { ExSys, } D^{k} \text { SimpApSys }\right) \tag{5}
\end{equation*}
$$

until the joint system rExSys $\cup \operatorname{SimpApSys}[k]$ tests projectively involutive. The dimension tests for involutivity are executed using the dimension information from the DifferentiaHilbertFunction for rExSys combined with the dimensions of the kernel and row space (co-kernel) of the projections of the prolonged approximate system. Since rExSys has 0 dimensional symbol all the calculations are efficiently carried out in J^{2}, actually J^{1} after elimination from rExSys.

References

[1] S. Anco, G. Bluman, and T. Wolf.
Invertible mappings of nonlinear PDEs to linear PDEs through admittel
conservation laws.
Acta Applicandae Mathematicae, 101, 21-38, 2008
[2] J. Carminati and K. Vu.
Symbolic computation and differential equations: Lie symmetrie
A. F. Cheviakov.
A.F. Cheviakov.
GeM software package for computation of symmetries and conservation laws
differential equations.
cations. 176(1), 48.61, 2007.

1) P. Olver.

Application of Lie groups to differential equations.
(5) T. Rocha Fillo and A. Figueiredo.

SADE: A Maple package for the symmetry analysis of differential equations.
Computer Physics Communications, 182(2), 467-476, 2011.
[6] $\underset{\substack{\text { T. Wolf. } \\ \text { Investigatit }}}{\text { and }}$
Investigating differential equations with crack, liepde, applsymm and conlaw
Handbook of Computer Algebra, Foundations, Applications, Systems, 37,
465-468, 2002.

