
#### Abstract

\section*{Introduction}

Take $f_{1}, \ldots, f_{n} \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $\mathbf{V}\left(f_{1}, \ldots, f_{n}\right)$ is zero-dimensional and fix some $p \in \mathbf{V}\left(f_{1}, \ldots, f_{n}\right)$. The intersection multiplicity $\operatorname{Im}\left(p ; f_{1}, \ldots, f_{n}\right)$ gives the weight at the point $p$ of the weighted sum in Bézout's Theorem. Magma supports the computation of intersection multiplicities for two projective curves while Singular provides support for the $n$-variate case, but only at the origin. In 2020, MAPLE introduced support for the computation of intersection multiplicities in the $n$-variate case at any point. By applying an algorithmic criterion, the MAPLE implementation seeks to reduce to the bivariate case, a case which has a well-known solution given by Fulton's algorithm. Unfortunately, this reduction is not always possible Following the design goals of MAPLE's intersection multiplicity algorithm, we seek to design an algorithm which can provide an alternative to intersection multiplicity algorithms which use standard bases (a Gröbner basis with a local term ordering). That is, we wish to compute intersection multiplicities in the $n$-variate case, without computing a standard basis of $f_{1}, \ldots, f_{n}$. Further, we aim to design an algorithm that can in practice, compute intersection multiplicities at any point, rational or not. Rather than reducing to the bivariate case to apply Fulton's algorithm, we extend Fulton's algorithm to a partial intersection multiplicity algorithm in the $n$-variate case. We further extend our generalization of Fulton's algorithm to handle any point as input, rational or not, by encoding such points in a zero-dimensional regular chain.


## Algorithm

Definition 1 (Local Ring). Take $p \in \mathbb{A}^{n}$, we define the local ring at $p$ as

$$
\mathcal{O}_{\mathbb{A}^{n}, p}:=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right] \text { where } g(p) \neq 0\right\}
$$

Definition 2 (Intersection Multiplicity). Let $f_{1}, \ldots, f_{n} \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$. We define the intersection multiplicity of $f_{1}, \ldots, f_{n}$ at $p$ as the dimension of the local ring at $p$ modulo the ideal generated by $f_{1}, \ldots, f_{n}$ in the local ring at $p$, as a vector space over $\mathbf{k}$. That is,

$$
\operatorname{Im}\left(p ; f_{1}, \ldots, f_{n}\right):=\operatorname{dim}_{\mathbf{k}}\left(\mathcal{O}_{\mathbb{A}^{n}, p} /\left\langle f_{1}, \ldots, f_{n}\right\rangle\right)
$$

Definition 3 (Modular Degree). Take $p \in \mathbb{A}^{n}, v \in\left\{x_{1}, \ldots, x_{n}\right\}$, and $f \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ where $x_{1}>\ldots>x_{n}$. We define the modular degree of $f$ at $p$ with respect to $v$ as

$$
\operatorname{deg}_{v}\left(f \bmod \left\langle V_{\langle v, p}\right\rangle\right),
$$

where $V_{<v, p}=\left\{x_{i}-p_{i} \mid x_{i}<v\right\}$. If $V_{<v, p}=\varnothing$ then the modular degree of $f$ at $p$ with respect to $v$ is simply the degree of $f$ with respect to $v$. If $p$ is the origin, we denote by $\operatorname{moddeg}(f, v)$ the modular degree of $f$ at $v$
Theorem 1 (Generalization of Fulton's Properties). Let $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{A}^{n}$ and $f_{1}, \ldots, f_{n} \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$.
$(n-1) \operatorname{Im}\left(p ; f_{1}, \ldots, f_{n}\right)$ is a non-negative integer iff $\mathrm{V}\left(f_{1}, \ldots, f_{n}\right)$ is zero-dimensional.
$(n-2) \operatorname{Im}\left(p ; f_{1}, \ldots, f_{n}\right)=0$ iff $p \notin \mathbf{V}\left(f_{1}, \ldots, f_{n}\right)$.
$(n-3) \operatorname{Im}\left(p ; f_{1}, \ldots, f_{n}\right)$ is invariant under affine changes of coordinates on $\mathbb{A}^{n}$
$(n-4) \operatorname{Im}\left(p ; f_{1}, \ldots, f_{n}\right)=\operatorname{Im}\left(p ; f_{\sigma(1)}, \ldots, f_{\sigma(n)}\right)$.
$(n-5) \operatorname{Im}\left(p ;\left(x_{1}-p_{1}\right)^{m_{1}}, \ldots,\left(x_{n}-p_{n}\right)^{m_{n}}\right)=m_{1} \cdot \ldots \cdot m_{n}$ for $m_{1}, \ldots, m_{n} \in \mathbb{N}$
$n-6) \operatorname{Im}\left(p ; f_{1}, \ldots, g h\right)=\operatorname{Im}\left(p ; f_{1}, \ldots, g\right)+\operatorname{Im}\left(p ; f_{1}, \ldots, h\right)$ for any $g, h \in \mathbf{k}\left[x_{1}\right.$,
such that $f_{1}, \ldots, g h$ is a regular sequence in $\mathcal{O}_{\mathbb{A}^{n}, p}$.

$$
h \text { is a regular sequence in } \mathcal{O}_{\mathbb{A}^{n}, p} \text {. }
$$

Algorithm 1. Generalized Fulton's Algorith

## Function im ${ }^{2}(P)$ Input: Let: $x_{1} \succ$

1. $p \in \mathbb{A}^{n}$ the origin.
2. $f_{1}, \ldots, f_{n} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ such
Output: $\operatorname{Im} p p ;$
if $f_{i}(p) \neq 0$ for $\ln$ any $i=1, \ldots, n$ then
in
return o
if $n=1$ then
if $n=1$ then
$L^{\text {return }} \max \left(m \in \mathbb{Z}^{+} \mid f_{n} \equiv 0 \bmod \left\langle x_{1}^{m}\right\rangle\right)$
/* Compute multiplicity $* / ~$
for $i=1, \ldots, n$ do
for $j=1, \ldots, n-1$ do

return $\mathrm{im}_{\mathrm{n}}\left(p ; f_{1}\right.$,
$\underset{\text { return }}{\underline{q_{i}} \leftarrow}$

$+{ }_{+}+\mathrm{im}_{n-1}\left(p ; q_{2}\left(x_{1}, \ldots, x_{n-1}, 0\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n-1}, 0\right)\right)$

## $+\operatorname{+im}_{2}\left(p, q_{n-1}\left(x_{1}, x_{2}, 0, \ldots, 0\right), f_{n}\left(x_{1}, x_{2}, 0, \ldots, 0\right)\right)$

$+\mathrm{im}_{1}\left(p ; f_{n}\left(x_{1}, 0, \ldots, 0\right)\right.$ )
n of Fulton's algorith
$\qquad$ modular degrees corresponding to $f_{1}$ $\qquad$ $n$. The main loop of the algorithm terminates when all entries above the anti-diagonal are equal to $-\infty$. In fact, this condition is exactly what we must enforce in order to split the intersection multiplicity computation into a sum of smaller intersection multiplicity computations and make progress towards termination.

Definition 4 (Matrix of Modular Degrees). The matrix of modular degrees of $f_{1}, \ldots, f_{n} \in$ $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ is the matrix whose $i$-th, $j$-th entry is $\operatorname{moddeg}\left(f_{i}, x_{j}\right)$
Lemma 1. Let $f_{1}, \ldots, f_{n} \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ forming a regular sequence in $\mathcal{O}_{\mathbb{A}^{n}, p}$ where $p$ is the origin. Let $V=\left\{x_{1}, x_{n}\right\}$ and let $V=\left\{x_{i} \in V \mid x_{i}>v\right\}$. Define $J:\{1, \ldots, n\} \rightarrow$ the origin. Let $=\left\{x_{1}, \ldots, x_{n}\right\}$ and let $>_{v}=\left\{x_{i} \in V x_{i}>v\right\}$. Define $J:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$ such that $J(i)=n-i+1$. Assume moddeg $\left(f_{i}, v\right)<0$ holds for all $i$ Moreover, if $q_{i}$ denotes the quotient of $f_{i}\left(x_{1}, \ldots, x_{J(i)}, 0, \ldots, 0\right)$ by $x_{J(i)}$ then we have:

$$
\begin{aligned}
\operatorname{Im}\left(p ; f_{1}, \ldots, f_{n}\right) & =\operatorname{Im}\left(p ; q_{1}, f_{2}, \ldots, f_{n}\right)+\operatorname{Im}\left(p ; x_{n}, q_{2}, \ldots, f_{n}\right) \\
& +\ldots+\operatorname{Im}\left(p ; x_{n}, \ldots, x_{J(i)+1}, q_{i}, f_{i+1}, \ldots, f_{n}\right)+ \\
& +\operatorname{Im}\left(p ; x_{n}, x_{n-1}, \ldots, q_{n-1}, f_{n}\right)+m_{n}
\end{aligned}
$$

where $m_{n}=\max \left(m \in \mathbb{Z}^{+} \mid f_{n}\left(x_{1}, 0, \ldots, 0\right) \equiv 0 \bmod \left\langle x_{1}^{m}\right\rangle\right)$.
In order to apply the lemma, we must first rewrite $f_{1}, \ldots, f_{n}$ so that the matrix of modular degrees has all entries above the anti-diagonal equal to $-\infty$. We iterate column-wise, and hence the $j$-th iteration corresponds to the variable $x_{j}$. In the $j$-th iteration we choose a pivot element $f_{m}$, with minimal modular degree in $x_{j}$, and use $f_{m}$ to reduce the modular degree in $x_{j}$ of the other polynomials using only operations permissible by $(n-7)$.

The algorithm is partial, meaning it doesn't always succeed. This is because ( $n-7$ ) cannot generically be used to reduce modular degrees when $n>2$. When $(n-7)$ is applicable, the algorithm proceeds as expected. When $(n-7)$ is not applicable, we return Fail to the user. In particular, suppose we wish to replace some $f_{i}$ with

## $f_{i}^{\prime}:=\operatorname{lc}\left(f_{m}\left(x_{1},\right.\right.$. <br> $\left.\left., x_{k}, 0, \ldots, 0\right) ; x_{k}\right) f_{i}-x_{k}^{d} \operatorname{lc}\left(f_{i}\left(x_{1}\right.\right.$, <br> $\left.\left., x_{k}, 0, \ldots, 0\right) ; x_{k}\right) f_{m}$

for some $i, m, k, d \in \mathbb{N}, i \neq m$. Unlike the bivariate case, $\operatorname{lc}\left(f_{m}\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) ; x_{k}\right)$ is not always invertible in $\mathcal{O}_{\mathbb{A}^{n}, p}$, hence property $(n-7)$ does not always apply. Hence, it is not generically true that $\left\langle f_{1}, \ldots, f_{i}, \ldots, f_{n}\right\rangle=\left\langle f_{1}, \ldots, f_{i}^{\prime}, \ldots, f_{n}\right\rangle$. That is, substituting
$f_{i}^{\prime}$ for $f_{i}$ does not necessarily preserve intersection multiplicity and thus, return Fail, Example 1. Let $f_{1}, f_{2}, f_{3} \in \mathbf{k}[x, y, z]$ be given by $f_{1}=x^{2}, f_{2}=(x+1) y+x^{3}, f_{3}=$ $y^{2}+z+x^{3}$. The algorithm first computes the below matrix $r$ of modular degrees:

where the $i$-th row corresponds to the polynomial $f_{i}$ and the $j$-th column corresponds to the variable $x_{j}$. Hence, $(i, j)$-th entry is the modular degree of $f_{i}$ w.r.t. $x_{j}$. Write $f_{2}^{\prime}:=f_{2}-x f_{1}=(x+1) y+x^{3}-x^{3}=(x+1) y$, and $f_{3}^{\prime}:=f_{3}-x f_{1}=y^{2}+z+x^{3}-x^{3}=y^{2}+z$. Redefine $f_{2}:=f_{2}^{\prime}$ and $f_{3}:=f_{3}^{\prime}$. Hence, we consider $f_{1}=x^{2}, f_{2}=(x+1) y, f_{3}=y^{2}+z$. The matrix $r$ computed in the first section is now

and after reordering $f_{1}, f_{2}, f_{3}$ by modular degree we have $f_{1}=(x+1) y, f_{2}=y^{2}+z, f_{3}=x^{2}$ with matrix of modular degrees:


Consider $f_{1}=(x+1) y, f_{2}=y^{2}+z, f_{3}=x^{2}$. Write

$$
f_{2}^{\prime}:=(x+1) f_{2}-y f_{1}=(x+1) y^{2}+(x+1) z-(x+1) y^{2}=(x+1) z
$$

Redefining $f_{2}:=f_{2}^{\prime}$ and reordering by modular degree in $y$, we have $f_{1}=(x+1) z, f_{2}=$ $(x+1) y, f_{3}=x^{2}$, and the matrix of modular degrees is now:

$$
r=\left[\begin{array}{cc}
-\infty & -\infty \\
-\infty & 1 \\
2 & 0
\end{array}\right]
$$

Applying the Lemma on $f_{1}=(x+1) z, f_{2}=(x+1) y, f_{3}=x^{2}$ gives:
$\operatorname{Im}\left(p ; f_{1}, f_{2}, f_{3}\right)=\operatorname{Im}\left(p ; x+1, f_{2}, f_{3}\right)+\operatorname{Im}\left(p ; z, x+1, f_{3}\right)+\operatorname{Im}\left(p ; z, y, f_{3}\right)$ $=0+0+2$.

## Implementation and Experimentation

We extend our algorithm to handle a zero-dimensional regular chain as input, rather than just a point, allowing it to compute intersection multiplicities at any point, rational or not. Additionally, we reimplement Maple's IntersectionMultiplicity command to combine the generalization of Fulton's algorithm with the partial intersection multiplicity algorithm already in MAPLE, forming a hybrid intersection multiplicity algorithm. Lastly, we modify the TriangularizeWithMultiplicity command to support this new implementation; a command which first solves the system of polynomial equations and then maps the IntersectionMultiplicity command to each solution.

The first (respectively second) table below compares the generalization of Fulton's algorithm to the existing intersection multiplicity algorithm in Maple using the IntersectionMultiplicity command (respectively TriangularizeWithMultiplicity). For the TriangularizeWithMultiplicity command, Success Ratio denotes the number of intersection multiplicities successfully computed over the total number of regular chains returned. All tests are un in serial using Maple 2021.2

