Jüergen Gerhard ${ }^{1}$, Marc Moreno Maza ${ }^{2}$ and Linxiao Wang ${ }^{2}$

${ }^{1}$ Maplesoft, ${ }^{2}$ University of Western Ontario

Overview

We present a new algorithm for computing the integer hull of a rational polyhedral set, together with its implementation in MAPLE, as the PolyhedralSets:-IntegerHull command, and in the C programming language in the BPAS library. Our experimental results show that our algorithm can deal with polyhedral sets with large number of integer points, which are out of reach for state-of-the-art software. More details can be found in our CASC2022 paper [1].

Main ideas

Let $P \subseteq \mathbb{Q}^{d}$ be a rational polyhedron that is, the solution set of a system of linear inequalities. In practice, P is given by its faces of dimension 0 , called vertices, or its faces of dimension $d-1$, called facets. The integer hull P_{I} of P is the intersection of all polyhedra containing $P \cap \mathbb{Z}^{d} . P_{I}$ is itself a rational polyhedron and Algorithm 1 computes its vertices. With the polyhedron on Figure (1a) as input, we illustrate the three main steps of our algorithm. Normalization. By means of Hermite normal form, we construct a rational polyhedron $Q \subseteq \mathbb{Q}^{d}$ such that $Q_{I}=P_{I}$ and each supporting hyperplane of a facet has integer points, see Figure (1b).
Partitioning. We search for integer points inside Q so as to partition Q into smaller polyhedral sets, the integer hulls of which can easily be computed. We observe that every vertex of Q which is an integer point is also a vertex of Q_{I}. Now, for every vertex v of Q which is not an integer point we look, on each facet F to which v belongs, for an integer point $C_{v, F}$ that is "close" to v (ideally as close as possible to v). This is achieved by a recursive call to our algorithm so as to compute the integer hull of F, see Figure (1c). All the points $C_{v, F}$ together with the vertices of Q are used to build that partition of Q, see Figures (1d), (1e), (1f), (1g).
Merging. Once the integer hull of each part is there, a convex-hull procedure (QuickHull) yields P_{I}. The output polyhedron is on Figures (1h). Note that Q_{I} has often far more many vertices than P.

[^0]General algorithm
Algorithm 1: Compute the integer hull of a
polyhedralset
${ }_{1}$ Function IntegerHull (P)
Input: P, a PolyhedralSet
Output: I, a list of the vertices of the integer hull of P
${ }_{2}$ if P is not fully dimensional then $R_{F}, G \leftarrow$ HNFProjection(P)
/* make projection G of P to a dimension where G is full
dimensional */
$V_{G} \leftarrow$ IntegerHull(G)
$V_{P} \leftarrow \mathrm{R}_{\mathrm{F}}\left(\mathrm{V}_{\mathrm{G}}\right)$
${ }_{6}$ return V_{P}
${ }_{7} P \leftarrow \operatorname{Normalization}(P)$
\& $D \leftarrow$ Dimension (P)
, $L \leftarrow$ FaceLattice (P)
${ }_{10}$ for each f in L do
${ }_{11} \quad V_{f} \leftarrow$ IntegerHull(f)
${ }_{12} \quad V \leftarrow$ Vertices(f)
${ }_{13}$ for each v in V do
${ }_{14}$ Lfind the closest point to v in V_{f}
${ }_{15} \bar{V}_{\text {set }} \leftarrow\{ \}$
${ }_{16}$ for i from 0 to $D-2$ do
${ }_{17} F \leftarrow \operatorname{Faces}(\mathrm{~L}, \mathrm{i})$
${ }_{18}$ for each f in F do
$V \leftarrow$ Vertices(f)
${ }_{20}$ if there are integer points on f then

$$
\text { for each } v \text { in } V \text { do }
$$

$$
C \leftarrow \text { CornerPolySet(v) }
$$

$$
P_{T} \leftarrow \text { Enumeration(C) }
$$

$$
V_{T} \leftarrow \text { ConvexHull }\left(\mathrm{P}_{\mathrm{T}}\right)
$$

$$
V_{\text {set }} \leftarrow V_{\text {set }} \cup V_{T}
$$

else
$C \leftarrow$ CornerPolySet(f)
${ }_{28} \quad P_{T} \leftarrow$ Enumeration(C)
${ }^{29} \quad V_{T} \leftarrow$ ConvexHull $\left(\mathrm{P}_{\mathrm{T}}\right)$
${ }^{30} \quad V_{\text {set }} \leftarrow V_{\text {set }} \cup V_{T}$
${ }_{31}$ return ConvexHull $\left(V_{\text {set }}\right)$
[1] Marc Moreno Maza and Linxiao Wang. Computing the integer hull of convex polyhedral sets. In Computer Algebra in Scientific Computing - 24th International Workshop, CASC 2022, Gebze, Turkey, August 22-26, 2022, Proceedings, pages 246-267. Springer, 2022.

[^0]: An example and benchmarks

 | Volume | 447.48 | 6991.89 | 55935.2 |
 | :---: | :---: | :---: | :---: |

 Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH $\begin{array}{lllllll}\text { Time(s) } & 1.202 & 6.892 & 1.498 & 67.814 & 1.517 & 453.577\end{array}$ Table: Integer hulls of tetrahedra (4 facets, 4 vertices and 6 edges)

 | Volume | 412.58 | | 7050.81 | | 60417.63 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | Algorithm | IntegerHull $\mathrm{EIP}+\mathrm{CH}$ | IntegerHull $\mathrm{EIP}+\mathrm{CH}$ | IntegerHull $\mathrm{EIP}+\mathrm{CH}$ | | |
 | Time(s) | 1.476 | 5.711 | 1.573 | 60.233 | 1.728 |

 Table: Integer hulls of triangular bipyramids (6 facets, 5 vertices and 9 edges)
 Tables 1 and 2 show the benchmarks of our Maple implementation. It is accessible in Maple2022 as the PolyhedralSets : -IntgerHull command. The cost for finding all the integer points is related to the volume of the input and we can see the trend in the "EIP +CH " columns. The complexity of our algorithm depends on the number of facets and the number of fractional vertices in the input.

 | example IntegerHull | | Naive | Normaliz |
 | :---: | :---: | :---: | :---: |
 | 3d1_0 | 51.727 | 11.396 | 274.364 |
 | 3d1_1 | 52.034 | 13.483 | 1018.449 |
 | 3d1_2 | 60.821 | 21.106 | 2330.534 |
 | 3d1_3 | 54.350 | 79.219 | 153466.996 |
 | 3d2_0 | 4.488 | 0.826 | 851.495 |
 | 3d2_1 | 4.615 | 0.923 | 956.666 |
 | 3d2_2 | 4.624 | 1.527 | 793.192 |
 | 3d2_3 | 5.522 | 4.394 | 1318.150 |
 | 3d3_0 | 11.049 | 21.235 | 7862.109 |
 | 3d3_1 | 16.001 | 145.068 | N/A |
 | 3d3_2 | 23.822 | 2082.559 | N/A |
 | 3d3_3 | 24.162 | N/A | N/A |

 Table: Timing (ms) for computing integer hull of 3D examples.

 Table 3 show the benchmarks of our C/C++ implementation for some 3D inputs. We compare our results with that of the Normaliz library.

