
Computations of Integer Hulls of Polyhedra
Jüergen Gerhard1, Marc Moreno Maza2 and Linxiao Wang2

1Maplesoft, 2University of Western Ontario

Overview

We present a new algorithm for computing
the integer hull of a rational polyhedral set,
together with its implementation in Maple,
as the PolyhedralSets:-IntegerHull com-
mand, and in the C programming language in
the BPAS library. Our experimental results show
that our algorithm can deal with polyhedral sets
with large number of integer points, which are
out of reach for state-of-the-art software. More
details can be found in our CASC2022 paper [1].

Main ideas

Let P ⊆ Qd be a rational polyhedron that is, the
solution set of a system of linear inequalities. In
practice, P is given by its faces of dimension 0, called
vertices, or its faces of dimension d−1, called facets.
The integer hull PI of P is the intersection of all
polyhedra containing P ∩ Zd. PI is itself a rational
polyhedron and Algorithm 1 computes its vertices.
With the polyhedron on Figure (1a) as input, we
illustrate the three main steps of our algorithm.
Normalization. By means of Hermite normal form,
we construct a rational polyhedron Q ⊆ Qd such
that QI = PI and each supporting hyperplane of a
facet has integer points, see Figure (1b).
Partitioning. We search for integer points inside Q
so as to partition Q into smaller polyhedral sets, the
integer hulls of which can easily be computed. We
observe that every vertex of Q which is an integer
point is also a vertex of QI. Now, for every vertex
v of Q which is not an integer point we look, on
each facet F to which v belongs, for an integer point
Cv,F that is “close” to v (ideally as close as possible
to v). This is achieved by a recursive call to our
algorithm so as to compute the integer hull of F ,
see Figure (1c). All the points Cv,F together with
the vertices of Q are used to build that partition of
Q, see Figures (1d), (1e), (1f), (1g).
Merging. Once the integer hull of each part is
there, a convex-hull procedure (QuickHull) yields
PI. The output polyhedron is on Figures (1h). Note
that QI has often far more many vertices than P .

An example and benchmarks

(a) The input polyhedral set (b) Normalization (c) Integer hull of a facet (d) One vertex for which no
adjacent facet has integer points

(e) Every non-integer vertex and
its “closest” integer points form
a green part of the partition

(f) We make one or two blue
blue parts for each edge

(g) The parts for which all
vertices are integer, thus for
which the integer hull is obvious

(h) Integer hull of the input

Figure: A 3D example: the input has 5 vertices, 8 edges and 5 facets; its integer hull has 139 vertices.

Volume 447.48 6991.89 55935.2
Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH
Time(s) 1.202 6.892 1.498 67.814 1.517 453.577

Table: Integer hulls of tetrahedra (4 facets, 4 vertices and 6 edges)

Volume 412.58 7050.81 60417.63
Algorithm IntegerHull EIP+CH IntegerHull EIP+CH IntegerHull EIP+CH
Time(s) 1.476 5.711 1.573 60.233 1.728 512.101
Table: Integer hulls of triangular bipyramids (6 facets, 5 vertices and 9 edges)

Tables 1 and 2 show the benchmarks of our Maple
implementation. It is accessible in Maple2022 as the
PolyhedralSets : −IntgerHull command. The cost for finding
all the integer points is related to the volume of the input and we
can see the trend in the “EIP+CH” columns. The complexity of our
algorithm depends on the number of facets and the number of
fractional vertices in the input.

example IntegerHull Naive Normaliz
3d1_0 51.727 11.396 274.364
3d1_1 52.034 13.483 1018.449
3d1_2 60.821 21.106 2330.534
3d1_3 54.350 79.219 15346.996
3d2_0 4.488 0.826 851.495
3d2_1 4.615 0.923 956.666
3d2_2 4.624 1.527 793.192
3d2_3 5.522 4.394 1318.150
3d3_0 11.049 21.235 7862.109
3d3_1 16.001 145.068 N/A
3d3_2 23.822 2082.559 N/A
3d3_3 24.162 N/A N/A
Table: Timing (ms) for computing integer
hull of 3D examples.

Table 3 show the benchmarks of our
C/C++ implementation for some
3D inputs. We compare our results
with that of the Normaliz library.

General algorithm

Algorithm 1: Compute the integer hull of a
polyhedralset

1 Function IntegerHull(P )
Input: P , a PolyhedralSet
Output: I , a list of the vertices of the

integer hull of P
2 if P is not fully dimensional then
3 RF , G← HNFProjection(P)

/* make projection G of P to a
dimension where G is full
dimensional */

4 VG← IntegerHull(G)
5 VP ← RF(VG)
6 return VP

7 P ← Normalization(P )
8 D ← Dimension(P )
9 L← FaceLattice(P )

10 for each f in L do
11 Vf ← IntegerHull(f)
12 V ← Vertices(f)
13 for each v in V do
14 find the closest point to v in Vf

15 Vset← {}
16 for i from 0 to D − 2 do
17 F ← Faces(L, i)
18 for each f in F do
19 V ← Vertices(f)
20 if there are integer points on f then
21 for each v in V do
22 C ← CornerPolySet(v)
23 PT ← Enumeration(C)
24 VT ← ConvexHull(PT)
25 Vset← Vset ∪ VT

26 else
27 C ← CornerPolySet(f)
28 PT ← Enumeration(C)
29 VT ← ConvexHull(PT)
30 Vset← Vset ∪ VT

31 return ConvexHull(Vset)

[1] Marc Moreno Maza and Linxiao Wang. Computing the
integer hull of convex polyhedral sets. In Computer
Algebra in Scientific Computing - 24th International
Workshop, CASC 2022, Gebze, Turkey, August 22-26,
2022, Proceedings, pages 246–267. Springer, 2022.


