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Introduction

The polyhedral model has repeatedly shown how it facilitates various loop transforma ons, includ-

ing loop paralleliza on, loop ling, and so ware pipelining. However, parallelism is almost exclu-

sively exploited on a per-loop basis without muchwork on detec ng cross-loop paralleliza on op-

portuni es. While many problems can be scheduled such that loop dimensions are dependence-

free, the resul ng loop parallelism does not necessarily maximize concurrent execu on, especially

not for unbalanced problems. In this work, we introduce a polyhedral-model-based analysis and

scheduling algorithm that exposes and u lizes cross-loop paralleliza on through tasking. This

work exploits pipeline pa erns between itera ons in different loop nests, and it is well suited to

handle imbalanced itera ons. Our LLVM/Polly-based prototype performs schedule modifica ons

and code genera on targe ng a minimal, language agnos c tasking layer. We present results

using an implementa on of this API with the OpenMP task construct. For different computa-

on pa erns, we achieved speed-ups of up to 3.5× on a quad-core processor while LLVM/Polly

alone fails to exploit the parallelism. The objec ve of this paper is to detect the cross-loop task

parallelism in a program. We exploit this opportunity by detec ng pipeline pa ern between it-

era on blocks of different for-loop nests; we call it cross-loop pipeline pa ern. Detec ng this

pa ern provides a building block towards exploi ng the natural data-flow parallelism. There has

been some efforts to consider this paralleliza on opportunity. The paper [3] generates pipelined

mul -thread code by interleaving itera ons of some loops. Paper [2] proposes an algorithm for

detec ng pipeline opportuni es between itera on blocks of two loop nests.

Motivating example

Consider the program below, where A and B are two N × N matrices, and loops are sequen al.

Figure 1. Example with cross-loop pipeline

Figure 2. Sequen al execu on. R starts a er itera ons of S are finished.

Figure 3. Pipeline execu on. Itera ons of R are overlapped with itera ons of S.

In the pipeline execu on, thread_0 runs the itera on blocks of Statement S, and thread_1
runs the itera on blocks of Statement R. Thread_1 can start running an itera on of R right af-

ter thread_0 finishes the itera on block of S that it depends on.

Finding pipeline map

Consider two statements S and T with respec ve itera on domains I and J . Also, assume that

the itera ons of Swrite in a set of memory loca ons M, and that the itera ons of T read from M.

We define the pipeline map between S and T to be the rela on TS,T(I → J ), where (~i,~j) ∈ TS,T
if and only if (1) a er running all itera ons of S up to ~i, we can safely run all itera ons of T up

to ~j, and (2)~i is the lexicographically smallest vector and ~j is the lexicographically largest vector
with Property (1). This map is called the pipeline map, because for every pair (~i,~j) in TS,T, we can

run itera ons of T up to ~j and itera ons of S a er ~i, in parallel. Repea ng this pa ern creates

a pipeline among itera on blocks of the loop nests. We use the pipeline maps to par on the

itera on domain of each statement to get the itera on blocks that are in pipeline rela on. For

a statement S and a pipeline map T , if S is the source (resp. target) statement, we par on its

itera on domain, I , such that each element of Dom(T ) (resp. Range(T )) is the lexicographically
largest member of its part. Then, by mapping each member of each part to the largest member of

that part, we obtain the source blocking map VS(I → I) (resp. a target blocking map YS(I → I)).

Example of pipeline map

Consider the previous example with N=20. The pipeline map between statements S and R is:
{S[i0, i1] →R[o0, o1] : ∃(e0 = b(i1)/2c :

o0 = i0 ∧ 2e0 = i1 ∧ 2o1 ≥ i1 ∧ 2o1 ≤ 1 + i1
∧ i0 ≥ 0 ∧ i0 ≤ 8 ∧ i1 ≥ 0 ∧ i1 ≤ 16)}.

One part of the source blocking map is:

∃(e0 = b(o1)/2c : o0 = i0 ∧ 2e0 = o1 ∧ i0 ≥ 0 ∧ i0 ≤ 8 ∧ i1 ≥ 0 ∧ i1 ≤ 16 ∧ o1 ≥ i1 ∧ o1 ≤ 1 + i1).
Therefore, some elements of the map are:

{S[1, 1] → S[1, 2], S[1, 2] → S[1, 2], S[1, 3] → S[1, 4], S[1, 4] → S[1, 4]}.

Itera ons [1, 1] and [1, 2] are in one block, and [1, 3] and [1, 4] are in another block.

Detecting pipeline relations

For each statement S, there are poten ally several pipeline maps, for which S is either a source

or a target. As a result, there are poten ally several source and target blocking maps a ached to

S. However, for the statement S, we must have a single pipeline blocking map of the itera on

domain of S, so that each pipeline block can be considered as a task (actually a pipeline stage).

Therefore, for each statement S, we integrate all its source and target blocking maps together.
Our goal is to establish a pipeline rela on between all blocks of all statements. Moreover, we

choose these blocks so as to maximize the number of blocks of different loops that can execute

in parallel. In order to generate a correct task-parallel program we compute the dependence

rela ons between all tasks. As for the pipeline maps and blocking maps, the construc on of this

dependence graph is achieved with algebraic opera ons on binary rela ons. The performance

improvement of the pipelined program comes from the places that we can overlap the execu on

of itera on blocks of different for-loop nests. Therefore, the performance of the pipelined program

is limited to the loop nest with the maximum running me, Lmax. Figure 4 shows this idea.

Figure 4. Average case performance of pipelined program, where the third loop has the largest running me.

Code generation for the pipelined program

We implement the pipeline detec on algorithm as a part of Polly [1] and use the ISL library [4]

for polyhedral computa on. We modify Polly passes in the analysis, transforma on, and code

genera on phases to add support for the pipeline pa ern detec on and code genera on. For

exploi ng the detected parallelism, we use OpenMP task constructs. First, we extend the defini-
on of the SCoP to include informa on needed for pipelining. Then, we used the informa on to

create a schedule tree and the AST that includes tasks and their dependencies. In the final step,

we design a high-level OpenMP func on for exploi ng the detected task parallelism. Each task

is defined as a func on pointer with its input arguments integrated into a structure. We use the

in-dependencies and out-dependencies of the tasks as computed in the previous steps. We also

need the size of the input and the total number of statements that a task depends on.

Figure 5. Signature of the func on for crea ng tasks.

Evaluation

We simulate compute-intensive kernels by consecu vely calling the next_prime func on of the

GMP library on the elements of mpz matrices.

Figure 6. Speed-up of the tests, considering different values for N and SIZE.
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